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ABSTRACT 
This document describes the theoretical basis for the ABI cloud mask (ACM) algorithm.  
The function of ACM is provide the official binary clear-sky mask (clear or cloudy).  In 
addition to this official product, the ACM also provides a 4-level cloud mask (clear, 
probably clear, probably cloudy and cloudy).  This 4-level mask is an intermediate 
product and is generated for those algorithms and users who are familiar with the 4-level 
masks currently generated by NASA and NOAA. 
 
The ACM uses 9 out of the 16 ABI spectral bands.  Its cloud detection is based on 
spectral, spatial and temporal signatures.  Most thresholds were derived from analysis of 
space-borne Lidar and current geostationary imager data.  The ABI cloud tests where 
chosen to provide each algorithm a wide-range of cloud detection options.  The ABI 
mask is designed to allow algorithms and users to ignore certain tests and to efficiently 
re-compute the cloud mask.   In addition, the ACM design concept allows for easy 
expansion to include other tests as warranted.  The current tests have their heritage in the 
cloud masks run operationally by NOAA, NASA and EUMETSAT.   
 
The document first describes the satellite, ancillary and derived data used in the ACM. 
Then it describes the physical basis and the various tests used in the ACM as well as how 
the clear sky reflectance is calculated.   The document concludes with the verification of 
the ACM’s performance.  Due to its fundamental sensitivity to cloud over all surface 
types and illumination conditions, the CALIPSO/CALIOP (a space-borne LIDAR) data 
collocated with data from SEVIRI, serve as the prime validation source.  Comparisons to 
other established operational masks from NASA and EUMETSAT are also included.
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1 INTRODUCTION 
 

1.1 Purpose of this Document 
The primary purpose of this ATBD is to establish guidelines for producing the binary 
cloud mask from the ABI, flown on the GOES-R series of NOAA geostationary 
meteorological satellites. This document will describe the required inputs, the theoretical 
foundation of the algorithms, the sources and magnitudes of the errors involved, practical 
considerations for implementation, and the assumptions and limitations associated with 
the product, as well as provide a high level description of the physical basis for the initial 
estimate of the presence or absence of cloud within each ABI pixel.  The cloud mask is 
made available to all subsequent algorithms that require knowledge of the presence of 
cloud.  
 

1.2 Who Should Use this Document 
The intended users of this document are those interested in understanding the physical 
basis of the algorithms and how to use the output of this algorithm to optimize the cloud 
detection for their particular application.  This document also provides information useful 
to anyone maintaining or modifying the original algorithm.   

1.3 Inside Each Section 
 
This document is broken down into the following main sections. 
 

• System Overview: provides relevant details of the ABI and provides a brief 
description of the products generated by the algorithm. 
 

• Algorithm Description: provides a detailed description of the algorithm 
including its physical basis, its input and its output. 

 
• Assumptions and Limitations: provides an overview of the current limitations of 

the approach and notes plans for overcoming these limitations with further 
algorithm development. 

 

1.4 Related Documents 
This document currently does not relate to any other document outside of the 
specifications of the GOES-R Mission Requirements Document  (MRD) and to the 
references given throughout. 
 

1.5 Revision History 
Version 0.1 of this document was created by Dr. Andrew Heidinger of NOAA/NESDIS 
and its intent was to accompany the delivery of the version 0.1 algorithm to the GOES-R 
AWG Algorithm Integration Team (AIT). Version 0.9 is intended to accompany the 



 12 

delivery of the version 3 algorithm to the GOES-R AWG AIT. Version 2.0 is intended to 
accompany the 100% delivery code to the GOES-R AWG AIT.
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2 OBSERVING SYSTEM OVERVIEW 
This section describes the products generated by the ABI Cloud Mask (ACM) and its 
associated sensor requirements.  
 

2.1 Products Generated 
The cloud mask algorithm is responsible for the initial cloud detection field for all ABI 
pixels.  In terms of the F&PS, it is responsible directly for the Clear Sky Mask product 
within the Radiance Product Category.  However, the cloud mask will be used by most of 
the ABI algorithms that require knowledge of the presence or absence of cloud within a 
given pixel.  The current cloud mask requirement calls for a binary(yes/no) cloud mask 
for pixels out to a local zenith angle of 70o.  In concert with NASA and NOAA heritage, 
the ACM also generates a four-level mask whose categories are clear, probably-clear, 
probably-cloudy and cloudy.   In addition, the cloud mask output will include all test 
results that were used to determine the final four-level mask to allow for modification by 
downstream users. The requirements for the clear sky mask from the F&PS version 2.2 
are stated below. 
 
Table 1. Requirements from F&PS version 2.2 for Clear sky Mask 

G
eographic 
coverage 

V
ertical R

es 

H
orizontal R

es 

M
easurem

ent 
R

ange 

M
easurem

ent 
A

ccuracy 

R
efresh R

ate 

V
endor 

allocated 
ground latency 

Product 
m

easurem
ent 

precision 

CONUS N/A 2 km 0 -1 Binary 
87% 

Correct 
Detection 

15 min 266 
sec N/A 

MESO N/A 2 km 0 -1 Binary 
87% 

Correct 
Detection 

5 min 266 
sec N/A 

FD N/A 2 km 0 -1 Binary 
87% 

Correct 
Detection 

15 min 806 
sec N/A 

 
 

2.2 Instrument Characteristics  
 
The cloud mask will be produced for each pixel observed by the ABI.  Table 2 
summarizes the current channel set employed by the ACM.  Note, the ACM is designed 
to work even when only a subset of the expected channels is provided.  For example, 
when used with SEVIRI data, the ACM is able to account for the lack of Channel 4.  The 
ACM also works with data from the GOES-IM and GOES-NOP imagers.  
 
Table 2. Channel numbers and wavelengths for the ABI. (*- only if channel 10 BT is not available) 

 



 14 

Channel Number Wavelength (µm) Used in ACM 
1 0.47  
2 0.64  
3 0.86  
4 1.38  
5 1.61  
6 2.26  
7 3.9  
8 6.15  
9 7.0 * 
10 7.4  
11 8.5  
12 9.7  
13 10.35  
14 11.2  
15 12.3  
16 13.3  

 
The algorithm relies on spectral, spatial and temporal tests.  The performance of the cloud 
mask is therefore sensitive to any imagery artifacts or instrument noise.  Calibrated 
observations are also critical because the cloud mask compares the observed values to 
those from a forward radiative transfer model.  The channel specifications are given in 
the GOES-R MRD, version 3.7, section 3.4.2.1.4.0.  We are assuming the performance 
outlined in this section during our development efforts. 
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3 ALGORITHM DESCRIPTION 
This section provides a complete description of the algorithm at the current level of 
maturity (which will improve with each revision).  
 

3.1 Algorithm Overview 
 
The cloud mask serves a critical role in the GOES-R ABI processing system.  It is a 
fundamental cloud property in itself but also serves to determine which pixels can be 
used for clear-sky applications (SST, NDVI, etc.).  The following heritage cloud mask 
algorithms have influenced the ACM: 

• CLAVR-x cloud mask from NESDIS 
• The MOD/MYD35 MODIS cloud mask from UW CIMSS 
• The Clouds and the Earth’s Radiant Energy System (CERES) MODIS cloud mask 

from NASA Langley Research Center 
• CASPR cloud mask used in the AVHRR Polar Pathfinder Extended (APP-x) 
 

As with the above masks, the ACM combines spectral and spatial tests to produce a 4-
level classification of cloudiness. The 4-levels of the ACM cloud mask are: 

• Clear, 
• Probably Clear, 
• Probably Cloudy, and 
• Cloudy. 

 
These categories are the same as those employed in the CLAVR-x and MYD35 masks.  
In general, the cloud mask is designed so that the clear and cloudy pixels are suitable for 
clear and cloudy product generation.   
 
In addition to the 4-levels of cloudiness, the ACM also provides the results of every test 
used to compute the 4-level mask.  This information is provided to allow other 
applications to modify the cloud mask to suit their specific needs.   
 

3.2 Processing Outline 
The processing outline of the ACM is summarized in Figure 1 below.  The current ACM 
is implemented within the GOES-R AWG AIT Framework.  The Framework provides all 
of the observations and ancillary data, such as the data from the NWP and RTM.  The 
ACM is designed to run on segments of data where a segment is comprised of multiple 
scan lines.  
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Figure 1 High Level Flowchart of the ACM illustrating the main processing sections. 
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3.3 Algorithm Input 
This section describes the input needed to process the ACM.   While the ACM is derived 
for each pixel, it does require knowledge of the surrounding pixels.  Currently, the ACM 
is run on segments that contain 200 scan-lines.  While the final size of the segments is to 
be determined, the minimum number of scan lines per segment for the ACM is driven by 
the minimum number of scan lines required to fully utilize the local radiative center 
routine as well as in order to calculate the nearest warmest center and other spatial 
uniformity information. 

3.3.1 Primary Sensor Data 
The list below contains the primary sensor data used by the ACM. By primary sensor 
data, we mean information that is derived solely from the ABI observations and 
geolocation information. It should be noted that the 0.65 µm channel will be sub-sampled 
to the resolution of the IR channels, which is currently 2km. 
 

• Calibrated solar reflectance percents (0-100%) for channels 2, 4, 5 and 7 
NOTE – Reflectances are normalized in the algorithm in the terminator region, 
for pixels with a solar zenith angle of greater than 60o. The renormalization of the 
reflectances is described in section 3.4.2.5. 

• Calibrated radiances for channels 7, and 14 
• Calibrated brightness temperatures for channels 9, 10, 11, 14, and 15 
• Calibrated brightness temperatures for channel 14 and 15 at neighboring warm 

center (NWC) for each pixel. Process to calculate NWC in Section 3.3.3 
• Bad pixel mask for each channel 
• Space mask 
• Channel 7 solar energy (mW/m^2/cm^-1) 
• Local zenith angle (i.e. the namely the angle between the zenith line and a line up 

to the satellite). 
NOTE: The requirement is to produce the clear sky mask out to a local zenith 
angle of 70o. The cloud mask is not processed outside of this range. 
 

• Solar zenith angle 
• Glint zenith angle 
• Scattering angle 
• Cosine of sensor, scattering and solar zenith angles 
• Number of lines and elements for the given segment 
• Satellite name 
• Channel 14 brightness temperatures from the image 15 minutes prior 
• Channel 11, 14 and 15 brightness temperatures from the image one hour prior 
 

3.3.2 Ancillary Data 
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The following data lists the ancillary data required to run the ACM.  By ancillary data, 
we mean data that requires information not included in the ABI observations or 
geolocation data. Unless otherwise indicated, a more detailed description of each set of 
ancillary data is provided in the GOES-R Algorithm Interface and Ancillary Data 
Description Document (AIADD). The NWP and RTM data, which are at NWP 
resolution, are interpolated to pixel level as described in the AIADD. While six-hour 
forecasts were used in the development of the ACM, and, as such, are recommended, any 
forecast in the 0 to 24 hour range is acceptable. 

• Surface elevation 
Both the surface height and maximum surface elevation in a 3x3 box are used in 
the ACM. The maximum and standard deviation of current segment of surface 
elevation in a 3x3 box is calculated using the spatial uniformity algorithm, as 
described in the AIADD. 
 

• Ancillary Land mask 
This is the 1km ancillary land mask, as described in the GOES-R AIADD. This is 
used to create the internal land mask, described in section 3.3.3, as well as in the 
ETROP test to restore erroneous results near land/water boundaries.  

• Ancillary Coast mask 
This is the 1km ancillary coast mask, as described in the GOES-R AIADD. This 
is used to create the internal coast mask described in section 3.3.3. 
 

• Ancillary Desert mask 
This is the 1km ancillary desert mask, as described in the GOES-R AIADD. This 
is used to create the internal coast mask described in section 3.3.3. 

 
• Ancillary Snow mask 

This is the ancillary snow mask used to create the internal coast mask described in 
section 3.3.3. There are multiple sources of this and are described in the 
description of the ancillary snow mask.  

 
• Surface emissivity of channel 7  

Surface emissivity for each pixel and neighboring warm center (NWC) for each 
pixel are required. The calculation of the NWC described in Section 3.3.3. The 
input of the surface emissivity is either the SEEBOR emissivity for land pixels or 
a constant emissivity of 0.99 for ocean pixels, as described in the GOES-R 
AIADD 

 
• NWP level associated with the surface 

 
• NWP level associated with the tropopause 

 
• Local Zenith Angle bin 

 
• NWP Line and element indices  

 
• Surface temperature from NWP 
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• Total precipitable water from NWP 
 

• Total column ozone from NWP 
 

• Clear-sky Infrared RTM Calculations 
o Clear-sky top-of-atmosphere (TOA) radiances for channel 7 and 14 
o Clear-sky top-of-atmosphere (TOA) brightness temperatures computed for 

channels 14 and 15. 
o Clear-sky transmission profiles for channel 7 
o Equivalent blackbody radiance of a cloud emitting at the temperature of 

the Tropopause for channel 14. 
o Clear-sky TOA channel-14 brightness temperature from the image 15 

minutes prior. 
 
• Clear-sky Reflectance 

o The primary source of the surface reflectance data over land is the MODIS 
white-sky albedo (Moody et al, 2008) ancillary dataset, as described in the 
AIADD. 
 Operationally the clear sky reflectance will be given by either the clear 

sky reflectance composite produced by the Land AWG team or the 
MODIS white-sky albedo ancillary dataset (Moody et al, 2008) . The 
MODIS ancillary dataset will be used as a backup dataset to the Land 
AWG clear sky composite. 

 For the global MODIS white-sky albedo dataset, a nearest neighbor 
sampling method is used to get the data for each pixel. This means the 
MODIS pixel with the closest distance to the imager pixel, is used. 
This method is described in the GOES-R AIADD. 

 If the clear sky surface reflectance from the MODIS dataset or the 
Land AWG clear sky composite for a given point is not available or 
the missing value sentinel, the clear sky reflectance for that pixel is set 
to 45% for land pixels and 5% for water pixels, as determined by the 
MODIS Land/Sea ancillary dataset. 

 
o The uncorrected 3x3 pixel box centered on a pixel maximum and standard 

deviation for the clear sky channel 2 reflectance of are required. These are 
calculated using the spatial uniformity algorithm, as described in the 
AIADD. 

o The MODIS clear sky reflectance as well as the 3x3 maximum are first 
corrected for atmospheric scattering by accounting for the Rayleigh single 
scattering reflectance and transmission before being used anywhere in the 
ACM algorithm. The method for accounting for atmospheric scattering is 
described in Section 3.4.2. The 3x3 clear sky standard deviation is not 
corrected, as it is as it is simply a measure of the variability of the clear sky 
reflectance 

o In the terminator region, as determined by the terminator mask (described 
in section 3.3.3), the atmospherically corrected clear sky reflectance and 
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3x3 maximum clear sky reflectance are renormalized, as described in 
section 3.4.2.5, before being used anywhere in the ACM. 

3.3.3 Derived Data 
 

The following lists and briefly describes the data that are required by the ACM that are 
either provided by other (such as the previous cloud mask and the ABI snow mask) or are 
internally derived inputs to the cloud mask tests.  
 

• Derived channel 7 emissivity, described in section 3.4.1.3.1. 
 

• Land mask 
Using the ancillary land mask, as described in the AIADD, each pixel is flagged 
internally as land or water. All pixels that are marked as land or coast are flagged 
as “land” in the internal land mask, and all other pixels are flagged as “water”.   
This internal land/ocean mask is the fourth bit in the packed test flags, as 
described in section 3.4.4.1.2, and is used by the various tests to determine which 
threshold is used for land and water pixels. Land and coast pixels are flagged 
internally as 1, water pixels are flagged internally as 0. Unless otherwise noted, 
this internal land mask is used to determine if a pixel is land or water by the cloud 
detection tests. 

 
• Coast mask 

Using the ancillary coast mask, as described in the AIADD, each pixel is flagged 
internally as coast or not coast. If the ancillary coast mask is 0, the internal coast 
mask is marked as “non-coast”, and all other pixels are marked as “coast”. This 
internal coast mask is the fifth bit in the packed test flags, as described in section 
3.4.4.1.2, and is used by the various tests to determine coast pixels. Coast pixels 
are flagged internally as 1, non-coast pixels are flagged internally as 0. Unless 
otherwise noted, this internal coast mask is used to determine if a pixel is coast or 
non-coast by the cloud detection tests. 
 

• Desert mask 
Using the ancillary desert mask, as described in the AIADD, each pixel is flagged 
internally as desert or non-desert. Only “bright desert” pixels from the ancillary 
desert mask are marked internally as “desert”. All other pixels are marked as 
“non-desert.”  This internal desert mask is the seventh bit in the packed test flags, 
as described in section 3.4.4.1.2, and is used by the various tests to determine if a 
desert threshold is needed. Desert pixels are flagged internally as 1, non-desert 
pixels are flagged internally as 0. Unless otherwise noted, this internal desert 
mask is used to determine if a pixel is desert or non-desert by the cloud detection 
tests.  
 

 
• Snow mask 

The ACM requires knowledge of the presence of snow covered land surfaces and 
(if present) sea-ice for all pixels on the disk.  Operationally, this information is 
provided by the NESDIS IMS data set from the previous day. A description of the 
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IMS dataset is provided in the GOES-R AIADD ancillary data section. It is 
expected that the ABI snow mask product will feed into the IMS product suite 
after it has been evaluated by the IMS team post-launch.  As a backup, the GFS 
snow mask can be used. The internal snow mask is initially flagged as “non-
snow” unless the ancillary snow mask has the pixel marked as “snow” or “sea 
ice” (which is only given by the IMS/SSMI dataset). If a given pixel is marked as 
snow and has a 11 µm brightness temperature of greater than 277K, the internal 
snow mask set to “non-snow”. This internal snow mask is the eighth bit in the 
packed test flags, as described in section 3.4.4.1.2, and is used by the various tests 
to determine if a pixel is snow are not. Depending on the test, this may mean the 
test is not performed. Snow pixels are flagged internally as 1, non-snow pixels are 
flagged internally as 0. Unless otherwise noted, this internal snow mask is used to 
determine if a pixel is snow or non-snow by the cloud detection tests. 

 
• Valid pixel mask 

A internal valid pixel is determined to be valid if it is not a space pixel, has a local 
zenith angle of less than 70o, and has a valid measured and clear sky 11µm 
brightness temperature (i.e. BT11µm,clr > 200.0 K). If a pixel does not meet these 
criteria, the 4-level cloud mask is set to “Probably clear”, the binary cloud mask is 
set to “clear, the appropriate quality flag is set, as described in section 3.4.4.2, and 
the ACM is not computed. The valid pixel mask is also the first bit in the packed 
test flags, as described in section 3.4.4.1.2. Valid pixels are flagged internally 1 
and non-valid pixels are flagged internally 0. Initially, all pixels are flagged as 
“non-valid”.  

 
• Cloud Mask 

For the Terminator Thermal Stability Test (TERM_THERM_STAB), the cloud 
mask from one hour prior is required. 
  

• Local Radiative Centers  
Given a derived channel 14 top of troposphere emissivity, εstropo(11µm), the local 
radiative center (LRC) is defined as the pixel location, in the direction of the 
gradient vector, upon which the gradient reverses or when an emissivity value 
(εstropo(11µm)) greater than or equal to 0.75 is found, whichever occurs first. The 
gradient filter routine is provided by the framework and is required as an input to 
the ACM. The required inputs to the gradient filter are: 

o εstropo(11µm), 
o The line and element size of the segment being processed, 
o A binary mask for the segment of pixels that have non-missing 

εstropo(11µm) for the segment, 
o The minimum and maximum valid emissivity values (0.0 and 1.0 

respectively), and 
o The maximum εstropo(11µm) value to be considered (0.75). 

 
The outputs from the gradient filter are the line and element of the LRC. A further 
description of how the LRC is calculated using the gradient filter is described in 
Pavolonis (2009) and in the AIADD. After the LRC Line/Element are computed 
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using the LRC algorithm for each pixel of a given segment (as described in the 
AIADD, a further check is performed. If the derived 11 µm top of troposphere 
emissivity is greater than the gradient threshold (0.75) for a given pixel, then the 
LRC line/element is set to the current pixel line/element. 
 

• Neighboring Warmest Center 
The ACM employs a check for the line and element location of the warmest 
(largest 11 µm brightness temperature) pixel of an 21x21 region surrounding each 
pixel and classifies those as Neighboring Warmest Center (NWC). If the 21x21 
box does not fit within the extents of the array (ex. the edges of the current 
segment), then only the available values will be used in the calculation of the 
NWC.  The methodology to calculate the line and element of the NWC for a 
given segment of data is described in section 3.3.3.1. 
 
 
The assumption here is that the NWC points represent the optically thinnest pixel 
in the local area. 
 

• Correlation of channel 9/10 brightness temperature to channel 14 brightness 
temperature 
The ACM computes the Pearson Correlation Coefficient between the channel 
9/10 and channel 14 brightness temperatures for each pixel over a 5x5 box. If the 
5x5 box does not fit within the extents of the array (ex. the edges of the current 
segment), then only the available values will be used in the calculation of the 
correlation coefficient. If channel 10 is not available, then the channel 9 
brightness temperature can be used. The methodology to calculate for each pixel 
in a given segment of data is described in section 3.3.3.2. 

 
• Derived channel 14 top of the Tropopause emissivity 

The ACM derives the channel 14 top of troposphere emissivity using the 
measured channel 14 radiance, clear sky channel 14 radiance, space mask, 
latitude/longitude cell index from the NWP, Tropopause index from the NWP, 
local zenith angle bin index, and channel 14 micron blackbody radiance. Both the 
channel 14 top of Troposphere emissivity for each pixel as well as the LRC 
channel 14 top of Troposphere emissivity for each pixel are required. 
 

• Spatial uniformity information 
The following pieces of information are calculated using the spatial uniformity 
algorithm, as described in the AIADD. 

• Minimum channel 2 reflectance over a 3x3 pixel array  
• Mean channel 2 reflectance over a 3x3 pixel array  
• Standard deviation channel 2 reflectance over a 3x3 pixel array  
• Minimum channel 14 brightness temperature over a 3x3 array 
• Maximum channel 14 brightness temperature over a 3x3 array 
• Standard deviation of the channel 14 brightness temperature over a 3x3 

pixel array 
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• The standard deviation of either the channel 9 or channel 10 brightness 
temperature over a 3x3 array. NOTE: Channel 9 is only used if channel 10 
is not available. 

 
• Cold surface pixel mask 

If a pixel has a surface temperature of less than 265K, it is defined as a cold 
surface. The cold surface mask is also the ninth bit in the packed test flags, as 
described in section 3.4.4.1.2. This is used by various tests to determine whether 
or not a test will be performed, such as the RTCT, ETROP, PFMFT and ULST 
tests. 
 
 
 

• Day/Night mask 
A day/night mask is defined based upon the solar zenith angle. Any pixels that 
have a solar zenith of less than 87o are classified as “day” and those greater than 
87o are classified as night. The day/night mask is the second bit in the packed test 
flags, as described in section 3.4.4.1.2. . Day pixels are flagged internally 1 and 
night pixels are flagged internally 0. Unless otherwise specified, this internal 
day/night mask is used to determine if a pixel is day or night for all of the cloud 
detection tests. 

 
• Glint mask 

An internal glint mask is calculated for all pixels and is initialized to “non-glint. 
For all pixels that have a glint zenith of less than 40o, are day pixels as defined by 
the day/night mask and are non-land pixels, as defined by the internal land mask 
described in section 3.3.3, are classified as “glint” pixels in the internal glint 
mask. If any of the pixels classified as “glint” have an 11µm brightness 
temperature of less than 273.0 K, or have an 11µm brightness temperature less 
than the clear sky 11µm brightness temperature minus 5 (BT11µm  < BT11µm,clr - 5.0) 
are restored to “non-glint”, in an attempt to restore cold pixels in the glint zone. 
An addition check is also performed on those pixels marked as “glint” which have 
a standard deviation channel 2 reflectance over a 3x3 pixel array. If it is less than 
0.10 * the mean channel 2 reflectance over a 3x3 pixel for the pixel 
(stddevref,ch2,3x3 > 0.10 * meanref,ch2,3x3). If this condition is met, the internal glint 
mask for those pixels is also restored to “non-glint.” Both the 3x3 mean and 
standard deviation of the 0.64 µm reflectance are calculated using the spatial 
uniformity function, which is described in the AIADD. The glint mask is the sixth 
bit in the packed test flags, as described in section 3.4.4.1.2. The internal glint 
mask has a value of 1 for “glint” pixels and a value of 0 for “non-glint” pixels. 
This internal mask is used by various tests to determine whether or not a test will 
be performed in the glint region, unless otherwise stated. 

 
• Terminator mask 

We classify those pixels that are between 87o and 93o as pixels that are in the 
terminator region. The terminator mask is the third bit in the packed test flags, as 
described in section 3.4.4.1.2. Terminator pixels are flagged internally as 1 and 
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non-terminator pixels are flagged at 0.  This is used by various tests to determine 
whether or not a it is to be performed based on the terminator region. 

 

3.3.3.1  Derivation of NWC 
 
For each pixel of a given segment of data, the NWC line and element are determined by 
scanning the surrounding 21x21 box centered on a given pixel. If the 21x21 box does not 
fit within the extents of the array, use only available values, i.e. reduce the effective box 
size. Let input_array be the corresponding array segment of the 11 µm brightness 
temperature, and let bad_mask be the corresponding bad pixel mask for the 11 µm 
channel, as described in the calibration section of the AIADD. The per-pixel 
determination of NWC is then as follows: 
 
 

1. Initialize NWC_max to -1.0*huge(q), where q is a floating point number 
and huge is the huge intrinsic FORTRAN function, i.e. initialize to a large 
negative floating point value. 

2. Initialize output arrays NWC_elem and NWC_line to the missing value 
sentinel for the current center pixel (M,N). 

3. For each line and element (X,Y) in the surrounding box centered on the 
current pixel (M,N): 

a. If the bad_mask(X,Y) is “Yes”, cycle to the next pixel 
b. If the input_array(X,Y) is the missing value sentinel, cycle to next 

pixel 
c. If the flag to enforce uniformity in land Mask for these 

computations is set to “Yes”, then check uniformity with current 
pixel. (currently the flag is set to “yes”) 

i. If land_mask(M,N) != land_mask(X,Y), cycle to next pixel 
d. If input_array(X,Y) > NWC_max: 

i. Set NWC_max = input_array(X,Y) 
ii. NWC_elem(M,N) = X 

iii. NWC_line(M,N) = Y 
 
Using the 3.9 µm emissivity as an example, e4 , the 3.9 µm emissivity at the NWC for a 
given pixel is  
 

e4,NWC = e4(NWC_elem, NWC_line) 
 
where NWC_elem and NWC_line are the element and line of the NWC for that particular 
pixel. In the event that NWC_elem or NWC_line are the missing value sentinel, then 
e4,NWC is set to the missing value sentinel. e4,NWC is used as an input for the ULST test. 

3.3.3.2 Derivation of Pearson Correlation coefficient 
 
The Pearson Correlation coefficient between the water vapor channel and IR channel is 
computed for each pixel in a given segment of data  using the method as described below, 
where M = 5: 
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• Define ‘x’ as the box centered at elem,line 
• Let Array_One be the MxM box centered at x of the 11 µm BT. Let Array_Two 

be the MxM box centered at x of the 7.0/7.4 µm BT 
o If the MxM box does not fit within the extents of the segment (ex. the 

edges of the current segment), then only the available values will be used, 
i.e. reduce the effective box size. 

o  ntotal = total number of pixels in the surrounding box. 
• If any pixel in the MxM box is bad, as determined by the bad pixel mask 

(described in the AIADD) for the 11 µm or 7. 0/7.4 µm channel, set the Pearson 
correlation coefficient to the missing value sentinel. 

• Compute the sum of the two arrays for the current pixel (utilizing the SUM 
FORTRAN intrinsic function) 

o Sum_Array _One = SUM(Array_One) 
o Sum_Array_Two = SUM(Array_Two) 

• Compute the means of the two arrays for the current pixel 
o Mean_Array_One = Sum_Array _One / ntotal 
o Mean_Array_Two = Sum_Array _Two / ntotal 

• Compute the Pearson Terms for both arrays (both are the size of the surrounding 
box) 

o Pearson_Corr_Term_1 = Array_One - Mean_Array_One 
o Pearson_Corr_Term_2 = Array_Two - Mean_Array_Two 

• Compute the sum of Pearson_Corr_Term_1 and Pearson_Corr_Term_2 (utilizing 
the SUM FORTRAN intrinsic function) 

o Sum_Corr _One = SUM(Pearson_Corr_Term_2) 
o Sum_Corr_Two = SUM(Pearson_Corr_Term_2) 

• Compute the top and bottom terms for the Pearson equation (utilizing the SUM 
FORTRAN intrinsic function) 

o Pearson_Top_1 = sum(Pearson_Corr_Term_1*Pearson_Corr_Term_2) 
o Pearson_Top_2 = (Sum_Corr _One *Sum_Corr_Two) / (ntotal) 
o Pearson _Bottom_ 1 = sum(Pearson_Corr_Term_12) - ((Sum_Corr_One)2) 

/ (ntotal) 
o  Pearson _Bottom_ 2 = sum(Pearson_Corr_Term_22) - 

((Sum_Corr_Two)2) / (ntotal) 
• Compute Pearson Correlation coefficient for the current pixel(utilizing the SQRT 

FORTRAN intrinsic function) 
 

)2__*1__(
2__1__

BottomPearsonBottomPearsonSQRT
TopPearsonTopPearson −

=χ
 

 
where χ is the Pearson correlation coefficient. 

3.4 Theoretical Description  
Cloud detection is the process of separating cloudy from clear pixels.  It always involves 
assumptions of the radiometric characteristics of the clear and/or cloudy state and looking 
for departures from them.  In the ACM, spectral, spatial and temporal tests are used to 
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look for clouds by identifying pixels that do not exhibit the expected behavior of the 
clear-sky state.  Each test described is applied to each pixel, resulting in a cloud/no cloud 
score, which is then used to decide whether a pixel is cloudy or clear.  

3.4.1 Physics of the Problem 
The challenge for any cloud mask is to exploit spectral, spatial and temporal signatures 
that maximize the sensitivity to the presence of cloud while simultaneously minimizing 
the false detection of cloud.  The ACM algorithm makes extensive use of information 
from NWP fields, coupled with a Radiative Transfer Model (RTM), to generate the 
expected clear-sky state for the spectral and temporal tests.  This approach has also been 
adopted by EUMETSAT (Dybrroe et al., 2005) however EUMETSAT uses lookup tables 
that pr-computed using results from an RTM. The ACM uses RTM results specific to the 
scene being processed.  While the current NWP fields often have errors in some critical 
fields, such as the surface temperature over land, they provide needed and useful 
information. Over the coming years before the launch of GOES-R, the NWP fields are 
expected to improve in both accuracy and spatial resolution.    For the spatial thresholds, 
we have no reliable information from the NWP fields and must rely on other sources.  
For example, the thresholds for the spatial uniformity tests rely on information from pre-
computed high resolution maps of surface elevation and surface reflectance (see 3.4.2.2).  
 
In addition, the spectral tests are broken into those that use infrared channels, shortwave-
infrared, and solar-reflectance channels. All applicable tests are used to construct the 
ACM.  However, users that wish to have a cloud mask with consistent day-night 
performance are encouraged to use the cloud mask generated without the solar reflectance 
tests considered.   
 
The other major type of test in the ACM is the restoral test.  The restoral tests are 
separated into tests that “restore” probably cloudy pixels to clear pixels and tests that 
“restore” cloudy pixels to probably cloudy pixels.  As defined, the effect of these restoral 
corrections is to provide a conservative estimate on cloudiness (i.e., minimize false 
alarms in the ACM).  Note many of the cloud detection names arise from the Clouds 
from AVHRR (CLAVR) cloud mask developed by Stowe et al. (1999). 
 
The 4 level cloud mask, which is used to determine binary cloud mask, is initialized to 
“probably clear”. The 4-level cloud mask is computed for all non-space pixels which 
have a valid 11µm BT, as determined by the bad pixel mask,  and the clear sky 11 µm BT 
is greater than 200K. Pixels that meet these criteria are marked as “valid” pixels in the 
diagnostic output for each of the various tests. Otherwise, the valid pixel mask test is 
marked as invalid and the ACM is not performed.  
 
All tests are initialized to “NO” (clear, 0) before they are performed. The cloud detection 
tests are only performed if valid data for the input to the test is available and the pixel is 
marked as “good” by the bad pixel mask. Otherwise, the test is not performed and the 
ACM moves to the next test, leaving the result for that test as “NO”. If a test fails 
internally due to a computation issue, the test is marked as “NO” and the ACM moves to 
the next test. 
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At the very minimum, the 11µm BT and the clear sky 11 µm BT must be available for 
the ACM to perform. The various cloud tests may be performed in any order, with the 
exception of the clear sky uniformity tests and the restoral tests. These three tests must be 
performed after all the cloud detection tests have been performed, as they determine 
whether or not a pixel is probably clear or clear. The uniformity tests are only performed 
on “clear” pixels and the probably cloud restoral test is only performed on “cloudy” 
pixels. 
 

3.4.1.1 Use of CALIPSO Data in Determining Cloud Mask Thresholds 
An important part in the development of ACM is the use of CALIPSO observations to 
help define the thresholds.  Because CALIPSO provides one of the most unambiguous 
and direct measures of the presence of the highest cloud layers (i.e., those also observed 
by the ABI), it has been used to help understand the behavior of each cloud mask test for 
clear and cloudy pixels.  The actual determination of cloud mask thresholds is described 
later in the Mathematical Description Section.  While many cloud masks have used RTM 
simulations to set cloud detection thresholds (i.e., CASPR), the goal of the ACM is to use 
the availability of pixel-level clear-sky information to derive new cloud mask metrics that 
maximize the separation of cloudy and clear pixels.  The main advantage of using an 
observationally based approach (collocation of CALIPSO and geostationary test data) to 
threshold definition is that simulations may not capture the true variability present in real 
scenes.  The ACM allows for threshold modification when warranted.   
 
In this analysis, the 1 km cloud layer product from the standard CALIPSO processing 
(Vaughan et al., 2005) was used together with data from the SEVIRI instrument.  The 
CALIPSO product, developed by NASA Langley, provides top, base and number of 
cloud layers for up to 10 layers in a 1 km footprint, and attempts to distinguish cloud 
from aerosol, smoke and dust.  The data used for these analyses are Version 3.  For the 
purposes of this study, a cloud mask from CALIPSO was determined noting the number 
of cloud layers in each 1 km pixel (column).  Any CALIPSO column with more than zero 
cloud layers was assigned to the cloudy category.  In addition, a cloud fraction from 
CALIPSO was computed using results from all lidar fields of view that fell within each 
SEVIRI pixel. Using the method described in Heidinger and Pavolonis (2009), the 
temperature of the highest cloud layer is used in conjunction with the 11 µm clear 
radiance calculation and 11 µm SEVIRI observations to compute an 11 µm cloud 
emissivity.  This value represents the emissivity that a cloud must have if it existed at the 
level measured by CALIPSO with the observations measured by the geostationary sensor 
(i.e., ABI). This is hereafter referred to as the CALIPSO emissivity. 
 
As a lidar with an inherent vertical resolution of 30 m, CALIPSO can detect clouds with 
opacities and spatial scales far exceeding the capabilities of passive visible/infrared 
sensors such as SEVIRI or the ABI.  In order to use CALIPSO to determine meaningful 
thresholds for passive detection of clear and cloudy conditions, filtering is required to 
attempt to make the CALIPSO detection comparable to the performance expected from 
the passive observing system.  In this analysis, we ignored all CALIPSO results which 
had cloud fractions between 0.1 and 0.9.  The purpose of this filter is to restrict the 
analysis to CALIPSO data that is uniform over the spatial scales of the coarser SEVIRI 
(or ABI) pixels.  In addition, a threshold of 0.1 was applied to the CALIPSO emissivity 
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in an attempt to remove from consideration any pixels with very low optical depths that 
would fall below the detection capabilities of the channels on the ABI sensor.  
 
In the remaining part of this section, CALIPSO data matched in space and time with 
SEVIRI observations are used to demonstrate the skill of the cloud mask tests in the 
ACM.  The collocations occurred during an eight-week period comprised of two weeks in 
four seasons from 2006 and 2007.  Unless stated otherwise, all references to CALIPSO 
results refer to data from the SEVIRI/CALIPSO collocations for this eight-week dataset.   
The collocation tool used here was provided by Michael Pavolonis of NOAA. 
 

3.4.1.2 Infrared Cloud Detection Tests 
 
The infrared cloud detection tests use information provided by the infrared channels, 
primarily the 11mm channel. Several of the tests also rely on information from the 12µm 
as well as one of the two water vapor channels. These tests are performed regardless of 
whether a pixel is a day or nighttime pixel, as the information contained in IR and water 
vapor channels is not affected by diurnal changes. This includes the Terminator Stability 
test (Section 3.4.1.2.8), which uses the stability of the 11µm to restore cloudy pixels in 
the terminator region. 

3.4.1.2.1 ETROP – Channel 14 Emissivity Referenced to the Tropopause 
The ETROP test assumes that clouds produce colder 11 µm brightness temperatures than 
what would have been observed under clear-sky conditions. This is limited to 11 micron 
brightness temperatures between 170K and 310K as well as clear sky 11 micron 
brightness temperatures of above 240 K.  Traditionally, infrared window (IRW) 
brightness temperatures are used in gross contrast tests to identify cold pixels.  The 
ETROP, however, operates on the 11µm emissivity, computed assuming the cloud top 
resides at the Tropopause.  This Tropopause-relative emissivity is computed as follows: 
 

ε  = (I – I_clear) / ( I_bb – I_clear) 
 
where I is the observed radiance, I_clear is the computed clear-sky radiance (from the 
RTM) and I_bb is the equivalent blackbody radiance of a cloud emitting at the 
temperature of the Tropopause. As noted in the ancillary data section, I_bb is provided to 
the ACM as an input and described in the AIADD. 
  
The benefits of the ETROP are that a threshold based on ε has a more direct physical 
meaning than one based on a brightness temperature.  By including the clear-sky 
radiative transfer through the computation of ε , the ETROP test should be independent of 
surface temperature and atmospheric profiles. Because ε  is referenced to the Tropopause 
(recalling again that the cloud top temperature here is assumed to be that of the 
Tropopause), opaque clouds that are positioned at lower and warmer levels will generate 
ε  values less than one. The Tropopause-relative emissivity approximates the true 
emissivity only for clouds in the upper Tropopause.  In clear conditions, the Tropopause-
relative emissivity should approach zero. Negative values are possible when the 
computed clear-sky radiance is greater than the observed clear sky radiance. 
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Figure 2 and Figure 3 show the probability density functions (pdfs) of the values of ε 
measured for the collocated SEVIRI/CALIPSO observations.  The CALIPSO cloud 
mask, described above, was used to compute the separate clear and cloudy pdfs.  The 
pdfs show a significant separation between the clear and cloudy regions.  The clear-sky 
pdf has a peak near zero and the cloudy pdf peaks off zero.  The separation is less for 
land pixels but still offers skill at unambiguous cloud detection for a significant range of 
ε. 
 
In addition to using the pixel’s own values of ε , the ETROP also compares against the 
values of ε  for the ‘local radiative center’ (LRC) where defined.  As described above, the 
LRC represents the closest local opaque center determined by applying a gradient filter 
applied to ε .  LRC pixels therefore always have an equal or higher value of ε  than the 
non-LRC pixel with which they are associated.  The goal here is to extend the detection 
of the cloud to the cloud edges.  Figures 4 and 5 show the same pdfs as Figure 2 and 
Figure 3 except computed for the ε  values for the LRC. 
 
 

 
Figure 2   PDF of the channel 14 emissivity referenced to the tropopause for clear and cloudy pixels 
as determined by CALIPSO for ice-free ocean regions. 
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Figure 3 Same as Figure 2 for ice-free land regions. 
 
 

 
Figure 4  PDF of the 11 µm (channel 14) emissivity referenced to the tropopause computed for local 
radiative centers (LRC) for clear and cloudy pixels as determined by CALIPSO for ice-free ocean 
regions. 
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Figure 5   Same as Figure 4 for ice-free land regions. 
 
If either the emissivity or the emissivity at the Local radiative center surpasses the 
threshold, this gives a positive result for this test. For cold pixels, the ETROP has 11µm 
tropopause emissivity, calculated and at the LRC, threshold of 0.50. For desert pixels, the 
11µm tropopause emissivity, calculated and at the LRC, has a threshold of 0.40. The 
land, water and snow thresholds are shown in Table 3.  The threshold used is based on 
the current pixel, not on the surface type of the LRC pixel. In addition, the following is 
the precedence in setting the threshold: Cold surface, desert, snow, land/ocean. Thus, if a 
pixel is a cold, snowy, desert land pixel, then the cold surface threshold will be used. 
 
There are two more constraints applied to the ETROP test. The first is a test on highly 
non-uniform pixels. If the current pixel is “non-coast”, determined by the internal coast 
mask described in section 3.3.3, has a BTstddev,3x3,11µm (standard deviation of the 11 µm 
brightness temperature in a 3x3 box, as described in section 3.3.3) of greater than 0.50 
and if the test metric for this subtest is less than 0.20, the pixel is marked as “cloud”. The 
test metric for this subtest of the ETROP is ε   for pixels where the LRC is not defined 
(i.e. εLRC  is the missing value sentinel) and εLRC  where the LRC is defined (i.e. εLRC  is 
not the missing value sentinel). 
 
The second check is to perform a restoral to “clear” of pixels that are near land, which is 
where the sst field is often erroneous. If the pixel is marked as “cloud” by any of the 
previous ETROP tests and has a BTstddev,3x3,11µm (standard deviation of the 11 µm 
brightness temperature in a 3x3 box, as described in section 3.3.3) less than 1.0, is not 
land or deep ocean as determined by the ancillary land mask, described in section 3.3.2, 
and has a 11µm tropopause emissivity of less than 0.20, then the ETROP test for that 
pixel is restored to “clear”. 
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3.4.1.2.2 Relative Thermal Contrast Test (RTCT) 
While the ETROP tests works on the absolute deviation of the 11 µm observation from 
the clear-sky estimate, the Relative Thermal Contrast Test (RTCT) works on the relative 
spatial variation of the  local 11 µm observations.  The underlying assumption applied in 
the RTCT is that pixels significantly colder than their warmest neighbors are likely to be 
cloudy.  In the RTCT, the metric, χ, is defined as follows: 
 

mmx BTBT µµχ 1111,33max −=  
 
where BTmax3x3,11µm is the maximum 11 µm brightness temperature in a 3x3 box, as 
described in section 3.3.3, and BT11µm is the measured pixel’s 11 µm brightness 
temperature.  The targeted cloud features in this test are small scale clouds and cloud 
edges. This test is not performed on pixels where the minimum 11 µm brightness 
temperature in a 3x3 box is warmer than 300K, pixels that are coastlines, cold surfaces or 
snow. The threshold for the test is determined by taking the specific threshold for ocean 
and land pixels and adding 3 + 7 * (standard deviation of the surface height in a 3x3 box 
in m, as determined in 3.3.3)/1000.0 to it. 
 
Figure 6 and Figure 7 show the distribution of the RTCT metric derived from the 
CALIPSO cloud mask collocated with SEVIRI observations.  Due to the smaller surface 
temperature variations of the ocean surface compared to land surfaces, the clear-sky peak 
in the RTCT metric is narrower for ocean surfaces compared to that seen for land 
surfaces.  However, there is a range of the RTCT metric for both surfaces where cloudy 
values dominate the distribution.  One of the main benefits of this test is that it is entirely 
independent of the RTM+NWP calculations that play a large role in many of the other 
tests. 
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Figure 6  PDF of the difference in the maximum 11 µm brightness temperature over a 3x3 array and 
11 µm brightness temperature pixel observation for clear and cloudy pixels as determined by 
CALIPSO for ice-free ocean regions. 
 

 
Figure 7 Same as Figure 6 for ice-free land regions. 
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3.4.1.2.3 Temporal Infrared Test (TEMPIR) 
One of the benefits of the GOES-R ABI sensor over the GOES-NOP series imagers is the 
availability of remapped data taken with a high temporal resolution.  The remapping of 
the ABI data ensures that pixel position is maintained from image to image.  The 
Temporal Infrared Test (TEMPIR) takes advantage of this capability to detect cloud.  The 
assumption is that as clouds move and previously clear pixels in one image become 
cloudy in the next, the presence of cloud can be detected by rapid cooling of the observed 
11 µm brightness temperature of any one pixel. This type of information has been used 
successfully in the GOES era as demonstrated by Wu et al. (1999).   
 
The metric chosen for the TEMPIR is the difference between the 11 µm brightness 
temperature collected from the image 15 minutes prior and the current value:   
 

TEMPIR = BT11(T-15min) – BT11(T) 
 
A 15-minute temporal window was chosen because that is the current nominal temporal 
spacing of the SEVIRI data that comprises our test data set. The only restriction of this 
test is a maximum clear sky or measured 11 micron brightness temperature of 330K from 
the previous time step. Future studies will include analysis of 5-minute data and will 
attempt to determine the optimal temporal window for this test.  Figure 8 and Figure 9 
show the distributions of the TEMPIR metric for clear and cloudy pixels as determined 
by CALIPSO. What we are looking at in Figure 8 and 9 is the BTD of the previous image 
minus that of the current image.  The presence of cloud is determined only for the current 
image whose time is close to that of the CALIPSO overpass.  
 
As expected, the clear peaks in both the land and ocean surface are primarily centered on 
zero and the cloudy distributions show a much broader distribution.  The intent of the 
TEMPIR is to use the positive values of the metric for detecting cloud. The negative 
values of metric are not currently used by the TEMPIR but may offer skill in adjusting 
the cloud detection results for the previous image. 
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Figure 8  PDFs of the difference in the 11 µm brightness temperature observation from an image 
taken 15 minutes prior minus the 11 µm brightness temperature pixel observation for clear and 
cloudy pixels as determined by CALIPSO for ice-free ocean pixels. 
 
 

 
Figure 9  Same as Figure 8 for ice-free land regions. 
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The threshold the metric is based off of is derived from the current and previous image 
clear sky brightness temperature as well as the threshold shown in Table 3, and is derived 
as follows: 
 

Threshold = BT14,clear,prev – BT14,clear + 2.0 
 
If the test metric is greater than the threshold shown above, a positive result is given for 
the TERMIR test 
 

3.4.1.2.4 Positive Four Minus Five Test (PFMFT) 
Cloud detection tests that use split-window (11 and 12 µm) observations are common in 
many cloud mask algorithms. For example, they are employed in the MYD35, CASPR, 
APOLLO and CLAVR-1 schemes.  Due to the spectral variation in cloud transmission, 
the presence of semi-transparent cloud leads to a positive value of the 11-12 µm 
brightness temperature difference (BTD[11-12]).  Unfortunately, the physics of water 
vapor continuum absorption also generate positive values for clear-sky conditions 
especially for warm and moist atmospheres.  More detailed discussions of the use of this 
information for cirrus cloud detection are given by Inoue (1985) and Prabhakara et al. 
(1988).  Figure 10 shows the variation of BTD[11-12] with BT11 for clear-sky conditions 
computed using the LOWTRAN radiative transfer model coupled with a raob database.  
The axes in Figure 10 are labeled using the AVHRR nomenclature where channels 4 and 
5 provide the split-window measurements (FMFT – Four Minus Five Test). The general 
increase in BTD[11-12] with BT11 is due to the natural correlation of total precipitable 
water with surface temperature.  The black line in Figure 10 represents the threshold 
chosen for the CLAVR-1 algorithm.  Cloudy pixels would be those that fell above the 
threshold.    
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Figure 10 Variation of the 11 – 12 µm brightness temperature difference (T4 -T5) versus the 11 µm 
brightness temperature (T4) computed using the LOWTRAN radiative transfer model coupled with 
a raob database for oceanic conditions. Solid line represents CLAVR-1 threshold.  (Figure taken 
from Stowe et al., 1999) 
 
In the ACM, the PFMFT serves the same purpose as the FMFT in CLAVR-1 in that 
positive values of the BTD[11-12] are used to detect the presence of semi-transparent 
cloud.  Because the ACM has a clear-sky calculation of BTD[11-12] and BT11 for each 
pixel, it attempts to generate the test thresholds for each pixel dynamically.  To do this, it 
assumes that the clear-sky BTD[11-12] approaches 0 K when BT11 approaches 260 K.  
This assumption is consistent with Figure 10.  This assumption coupled with the clear-
sky calculations can be used to estimate a threshold when BT11 is warmer than 260 K.  
 
Mathematically, the estimate of the threshold, χ, is computed using the following relation 
 

 

 
where  and are the computed values of BTD[11-12] and BT11 for clear-
sky conditions.  For pixels with values of BT11 < 270 K, χ is set to zero.  The actual 
metric used in the ACM’s PFMFT is BTD[11-12] – χ  which physically represents the 
difference between the observed BTD[11-12] and what a clear-sky pixel should produce 
to be consistent with the observed BT11. The PFMFT test, though, cannot be performed 
on pixels with little variability (where the 3x3 11 micron BT standard deviation is less 
than 0.3), warm surfaces (11 µm brightness temperatures greater than 310 K) or where 
the clear sky 12 µm channel BT is larger than the clear sky 11 µm BT. 
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Figure 11 shows the variation of the PFMFT metric for clear and cloudy conditions as 
determined by CALIPSO for oceanic pixels. Figure 12 shows the same computation for 
land pixels.  As expected, this metric exhibits a significant separation for clear and cloudy 
pixels.  While clear values hover near zero, many cloudy pixels show significant positive 
values that are greater than those seen for clear pixels.  Figure 12 illustrates that the peak 
in the clear-sky distribution for land pixels is broader than that observed for clear-sky 
ocean pixels.  This result may be a due to the larger uncertainties associated with clear 
radiative transfer over land than over water. 
  

 
Figure 11 Variation of the PFMFT metric for clear and cloudy pixels over ocean surfaces.  PFMFT 
metric is the observed 11-12 µm brightness temperature difference minus an estimate of the clear-
sky 11-12 µm brightness temperature difference based on the clear-sky RTM and observed 11 µm 
brightness temperatures. 
 



 

 39 

 
Figure 12 Same as Figure 11 for ice-free land pixels. 
 
 
The threshold for cold surfaces, which is not shown in Table 3, is 1.0. The precedence for 
determining which threshold is to be used is as follows: cold surface, snow, land/ocean. 
So, if a pixel is a cold, snowy land pixel, the cold surface threshold is the one used. 

3.4.1.2.5 Negative Four Minus Five Test (NFMFT) 
The PFMFT, described above, looks for the positive BTD[11-12] values generated by 
semitransparent cloud.  Opaque clouds can also generate BTD[11-12] values that are less 
than the clear-sky estimates because opaque clouds (which typically produce a small 
BTD[11-12]) reside above the bulk of the water vapor that is responsible for elevated 
clear-sky BTD[11-12] (which arise from spectral variation of the water vapor continuum 
absorption). Scattering of infrared radiation may also contribute to negative BTD[11-12]. 
In polar regions, this test is also effective due to the positive BTD[11-12] characteristic of 
many snow-covered surfaces (see CASPR documentation). To exploit these 
characteristics, the Negative FMFT (NFMFT) test is used in the ACM.   
 
The metric used in NFMFT is  
 

χ =  -  
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As defined, the presence of cloud should be represented by positive values of this metric. 
This test is marked as cloud if the metric, χ, is greater than the threshold. This test is 
performed on all pixels that have a BTD[11-12] of less than 1.50. 
 
Figure 13 and Figure 14 show the derived clear and cloudy distributions of the NFMFT 
metric for ocean and land surfaces. These distributions confirm the hypothesis that the 
NFMFT metric applied under conservative thresholding can be used to detect clouds.  
While the amounts of cloud detected unambiguously by this test are not large, the 
NFMFT test provides additional information that complements information from other 
tests. 
 

 
Figure 13 Variation of the NFMFT metric for clear and cloudy pixels over ocean surfaces.  NFMFT 
metric is the computed clear-sky 11-12 µm brightness temperature difference minus the observed 11-
12 µm brightness temperature. 
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Figure 14 Same as Figure 13 for ice-free land regions. 
 

3.4.1.2.6 Relative Four Minus Five Test (RFMFT) 
 
The previous two split-window tests operated on the absolute difference between the 
observed and clear-sky BTD[11-12].  As its name implies, the Relative FMFT (RFMFT) 
operates on relative variations in the BTD[11-12].  While the basis for the PFMFT and 
NFMFT tests was the variation in BTD[11-12] for clear-sky conditions, the basis for the 
RFMFT is the variation in BTD[11-12] for cloudy conditions.   
 
Figure 15 shows the variation in simulated BTD[11-12] for a single cirrus cloud viewed 
at nadir in a standard tropical atmosphere.  The curves were generated by varying the 
cloud emissivity from zero (clear-sky) to unity.  The three curves represent three different 
clouds with varying cloud temperatures and cloud microphysics.  Typically these curves 
give maximum values of BTD[11-12] for visible (0.64 µm) optical depths of about 2.  
One obvious feature in Figure 15 is the rapid variation in BTD[11-12] with BT11 on 
either side of the maximum values of BTD[11-12].  In these simulations, BT11 will vary 
monotonically with cloud emissivity.  Because cloud emissivity often varies significantly 
over small spatial scales, the correlation of BTD[11-12] with BT11 offers another 
signature of cloud that can be exploited in the ACM. The β parameter in Figure 15 is 
defined as: 
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where ε11 and ε12 are the 11 and 12 micron emissivities. 

 
 

 
Figure 15 Variation of the 11 -12 µm brightness temperature difference as a function of the 11 µm 
brightness temperature computed for a single layer cirrus cloud for various cloud temperatures and 
cloud particle sizes.  Surface temperature was 300K and the atmosphere was modeled using a 
standard tropical profile.  (Figure taken from Heidinger and Pavolonis, 2009) 
 
 
The metric used in the RFMFT is the difference in BTD[11-12] from a pixel and its 
neighboring warm center (NWC). The NWC point is defined as the warmest pixel 
(greatest BT11) in a 21x21 pixel array centered on the pixel being tested.  The 
assumption here is that the NWC points represent the optically thinnest pixel in the local 
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area.  Significant deviations from the BTD[11-12] at the NWC (positive or negative) 
should be indicative of cloud.  Specifically, the metric used in the RFMFT is as follows: 
 

 
 
Taking thresholds on the absolute value of this difference ensures that large deviations in 
BTD[11-12] with respect to the NWC split window difference are captured regardless of 
sign.  
 
Figure 16 and Figure 17 show the probability of occurrence of the RFMFT metric for 
clear and cloudy regions as determined by CALIPSO.  As predicted by Figure 15, the 
RFMFT metric appears to offer skill at separating cloudy and clear pixels.  While the 
PFMFT and NFMFT distributions looked quite different for land and ocean, the RFMFT 
distributions look very similar.  This result may be due to lack of reliance on RTM 
calculations or due to robustness of the RFMFT metric. 

 
Figure 16 Probability distribution function (pdf) of the difference in the 11-12  µm brightness 
temperature difference observation minus the 11-12 µm brightness temperature difference 
observation from the neighboring warm center (NWC) for clear and cloudy pixels as determined by 
CALIPSO for ice-free ocean regions. 
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Figure 17  Same as Figure 16 for ice-free land regions. 
 
As can be seen in the above figures, the majority of the influence of the RFMFT occurs 
with BTD[11-12] less than 1.0, the RFMFT is not applied to pixels with a BTD[11-12] of 
greater than one. Because of the influence of the NWC as the test metric, the RFMFT is 
not applied to coast pixels, as determined by the coast mask. Finally, due to potentially 
large biases of the surface temperature over land in the NWP models for extremely warm 
surfaces, the RFMFT test is not applied to land pixels with 11 micron BT of over 300K. 
The precedence for determining which threshold is to be used is as follows: snow, desert, 
land/ocean. So, if a pixel is a snowy desert, land pixel, the snow threshold is the one used. 
 

3.4.1.2.7 Cirrus Water Vapor Test (CIRH2O) 
The CIRH2O test operates on the spatial correlation between an infrared window channel 
and an infrared water vapor channel.  The physical basis is that spatial variation due to 
surface features should be present in the window channel, but not in the water vapor 
channel (which cannot see the surface due to the clear-sky atmospheric opacity).  Spatial 
variations due to water vapor should be apparent in the water vapor channel but invisible 
in the window channel.  In addition, the presence of upper tropospheric cloud in both 
channels should always result in a decrease in the brightness temperature.  Therefore, 
spatial variations that are apparent and correlated in both the window and the water vapor 
channel are indicative of cloud.  The use of spatial patterns in water vapor channels to 
detect cirrus is described by Krebs et al. (2007) for use in the Meteosat Second 
Generation Cirrus Detection Algorithm MeCiDA.  MeCiDA operates on 15x15 arrays 
and does not look for correlations between channels.   
 
The CIRH2O test operates on 5x5 arrays and uses Channel 10 (7.4 µm) for the water 
vapor channel, or channel 9 (7.0 µm) as a backup if the 7.4µm channel is not available at 
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all, and the 11 µm channel for the infrared window channel.  The computation of the 
Pearson correlation coefficient, which is also the the test metric χ for the CIRH2O test, is 
described in section 3.3.3.2. If χ is greater than 0.7, the test returns a “yes” result. Unlike 
the other tests, this threshold was determined via manual analysis of co-located SEVIRI 
and CALIPSO data. In addition, a minimum amount of variability is required in both 
channels to prevent this test from falsely indentifying non-cloud features.  The 3x3 
standard deviations, as calculated by the spatial uniformity function described in the 
AIADD, for  both channels (water vapor and IR) are required to exceed 0.5K before this 
test is applied.  To avoid regions where the surface might be visible in the water channel, 
pixels where the slant path TPW, which is the TPW divided by the cosine of the satellite 
zenith angle, the test is not applied where it falls below 0.30 cm.  In addition, this test is 
not applied on pixels which have a surface height of over 2000.0 meters. While this test 
uses 3x3 pixel arrays, its results apply only to the center pixel in the array.  As stated 
above, one of the main features of this test is its insensitivity to surface effects.  
Therefore, there are no surface type dependent thresholds for this test. 
 

3.4.1.2.8 Terminator Thermal Stability Test (TERM_THERM_STAB) 
One of the most challenging region for cloud detection is in the terminator – the 
transition between day and night.  In this region, the visible reflectances become unusable 
and the 3.9 µm channel becomes insensitive to cloud.  Given the temporal stability of 
many cloud types (i.e., fog/low stratus), one solution to this conundrum is to exploit the 
temporal information provided by geostationary imagers. The TERM_THERM_STAB 
test is the solution developed for the ACM in the terminator region.  The 
TERM_THERM_STAB logic is taken directly from the cloud mask run by EUMETSAT 
in the Nowcasting Satellite Application Facility (SAFNWC).  This mask is described by 
Derrien et al. (2008).   The SAFNWC mask employs three terminator specific techniques.  
We chose only to employ the temporal-differencing technique and ignored the “region 
growing” technique outlined in Derrien et al. (2008).   
 
The TERM_THERM_STAB test operates on pixels with a solar zenith angle between 80 
and 93 degrees.  The test first looks at the cloud mask from the scene one hour earlier.  If 
that pixel is Cloudy, then this test will return a positive result if certain spectral signatures 
are constant from the current scene compared to the scene one hour ago.  The spectral 
signatures used over land differ from those used over ocean.  Over land, the spectral 
signatures are that the Channel 14 BT change must be less than 1.0K and that the change 
in the Channel 14 – Channel 11 BTD must be less than 0.5 K. Over ocean the spectral 
signatures are that the Channel 14 BT change must be less than 1.0K and that the change 
in Channel 14 – Channel 15 BTD must be less than 0.6 K.  It should be noted that there is 
no restriction on this test for snow/ice pixels. Note that the original SAFNWC test also 
looks at the cloud-top temperature product, which is not done in our implementation.   
 

3.4.1.3 Shortwave Infrared Cloud Detection Tests 
 
The shortwave cloud detection tests use information provided by the 3.9 µm channel.  
Because of the high sensitivity the 3.9 µm channel to solar energy, information can only 



 

 46 

be used outside of the terminator region. However, the 3.9 µm channel is extremely 
useful at night for determining the presence of low, uniform stratus, since they are more 
reflective (less emissive) than land or water. 
 
It should be noted that the thresholds determined for this ATBD were done for SEVIRI 
has a wider 3.9 µm channel than ABI. As such, the tuning of these thresholds will need to 
be done in the post-launch period. It is anticipated that the thresholds for the EMISS4 and 
ULST thresholds will lower, as the ABI has a similar spectral bandwith as the current 
GOES instrument.  

3.4.1.3.1 4 µm Emissivity Test (EMISS4) 
The 4µm emissivity test exploits the very high sensitivity of 4 µm observations (Channel 
7) to the presence of cloud.  Cloud detection tests in the 4 µm region often use brightness 
temperature differences computed from the 4 µm brightness temperature and the 11 or 12 
µm brightness temperatures.  The ACM employs the 4 µm emissivity, (e4) which is 
computed using the following relationship. 
 

 
 
where I4 is the 4µm observed radiance and I4,bb, the 4µm blackbody radiance, which is 
calculated by substituting the clear sky 11 µm brightness temperature into the fast Planck 
function, as described in the AIDD, using the coefficients for the 4 µm channel. The 
EMISS4 test uses the following metric (χ) in the test: 
 

 
 
The value of e4,clear is an estimate of e4 under cloud-free conditions and is computed as 
follows: 
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where I4,bb,clear is calculated similar to I4,bb,  except using the clear sky 11 µm brightness 
temperature, is the clear-sky estimate of the 4 µm radiance that includes the effects 
of solar reflectance. For day and terminator pixels, as determined by their respective 
masks and defined in section 3.3.3, solar

clearI ,4 is computed using the following relationship: 
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e4sfc is the 3.9 µm surface emissivity as provided by the surface emissivity database for 
the given pixel. As defined in the AIADD, this means the SEEBOR for land pixels, 0.99 
for water pixels. t4,sfc is the transmission for the solar-surface-satellite path, µo is the 
larger of either the cosine of the solar zenith angle for the current pixel or 0.05, I4,clear is 
the clear sky radiance calculated by the RTM, and Fo is the integrated amount of energy 
in the 3.9 µm channel (ABI channel 7).  At night, as determined by the day/night mask 
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described in section 3.3.3, the π
µ ooFsfcsfc te ,4,4 )1( −  term solar

clearI ,4  becomes 0, so solar
clearI ,4  = 

I4,clear. 
The transmission for the solar-surface-satellite path, t4,sfc, is calculated as follows: 
 

( )ρrtmsfc transt ,4,4 =  
trans4,rtm is the atmospheric transmittance for channel 7 for the slant-path from the top-of-
atmosphere to surface, determined by the RTM, which is given by the current pixel’s 
viewing zenith angle bin and taking the transmittance at the NWP surface level, and is 
raised to the ρ power. ρ is defined as: 
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where θsat is the local zenith angle and θsol is the solar zenith angle. The transmission for 
the solar-surface-satellite path, t4,sfc is only calculated for pixels that have a cos(θsol) 
greater than 0 and a cos(θsat) of greater than 0. Otherwise, t4,sfc is set to 0. 
 
This formulation for e4,cleardoes not remove the ambiguity that occurs in the 4 µm 
radiances during terminator conditions where the contribution of the observed radiance 
due to reflected sunlight is comparable to that due to emission.  
 
 
This particular metric was chosen to make a cloud detection test using the 4 µm channel 
that is largely insensitive to the solar viewing geometry.  One of the main disadvantages 
of brightness temperature difference tests are that the observed values are impacted 
greatly by the solar geometry and the scene temperatures.  Applying a constant brightness 
temperature threshold would therefore offer different sensitivity to the presence of cloud 
over different regions and times of day.   
 
The EMISS4 test is not applied in the glint regions as determined by the derived glint 
mask. In addition, if the pixel is to warm (an 11 µm BT of greater than or equal to 310 
K), this test isn’t performed. 
 
This test has been made day/night independent, working through the terminator. As 
shown above, this is done by including solar energy when present in the computation of 
the 4 µm clear-sky radiances that are then used to compute the e4_clear values.  We 
divide by e4,clear to account for the elevated values during the day and to make this metric 
day/night insensitive. At night, when there is no solar component,  simply becomes 
I4,clear. 
 
Figure 18 and Figure 19 show the distribution of the EMISS4 test metric, defined above, 
for clear and cloudy pixels over land and ocean.   As expected, cloudy pixels give large 
positive values while clear-sky pixels provide values that cluster around zero.  These 
figures show that cloudy results also provide negative values.  These values typically 
occur for water phase clouds (i.e., fog) during the night and are the focus of the ULST 
test. 
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Figure 18  Probability distribution function (pdf) of the ratio of (e4-e4_clr) / e4 for clear and cloudy 
pixels as determined by CALIPSO for ice-free land regions. e4 is the 4 µm (Channel 7) derived 
emissivity and e4_clr is the channel 7 emissivity derived from the clear-sky computations. 
 

 
Figure 19 Same as Figure 18 for ice-free land regions. 
 
The threshold for the EMISS4 test depends on the type of surface the particular pixel is. 
For desert pixels, the EMISS has threshold of 0.60 for the SEVIRI instrument. The 
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threshold for land, water and snow are shown in Table 3. In addition, if the pixel is a low 
emissive surface, a 3.9 µm surface emissivity less than 0.9, the threshold for the 
particular pixel is augmented by adding 0.5 to it. The precedence for determining which 
threshold is to be used is as follows: snow, desert, land/ocean. So, if a pixel is a snowy 
desert, land pixel, the snow threshold is the one used. 

3.4.1.3.2 ULST – Uniform Low Stratus Test 
The uniform low stratus test (ULST) takes advantage of the fact that low uniform stratus 
clouds are more reflective (less emissive) than the surface in the 3.9 µm channel (Hunt 
1973). The clear sky 3.9 µm emissivity is computed using the same formulation as given 
in the EMISS_4 explanation with the solar component neglected. 
 
The ULST operates on the difference between e4,clear, produced by the same manner as 
the EMISS_4 test, and e4 only during nighttime hours, as defined by the internal 
day/night mask described in section 3.3.3.  Because of the sensitive nature of this test, 
pixels that are to warm (11 micron BT of greater than 290K), are cold surfaces (as 
determined by the cold surface masked described in section 3.3.3), have large measured 
3.9 micron emissivities (.95 or greater), have high surface 3.9 micron emissivities (0.90 
and greater) or have suspect clear sky emissivities (less than 0.85 or greater than 1.25) do 
not have this test performed.  
 
Figure 20 and Figure 21 show the distribution of the clear and cloudy values of e4,clear  - 
e4 for land and ocean regions.  The focus of the ULST is on pixels where the values of 
e4,clear – e4 are positive,  which are due to  low level and often uniform clouds such as 
stratus and fog.  The ULST exists as a separate test from the EMISS_4 in order to provide 
flexibility to the fog detection algorithm run by the GOES-R AWG Aviation Team.  In 
addition, the ULST test looks at a different metric than the EMISS_4 test and is only 
performed at night. This figure indicates that while the ULST will not detect a large 
amount of cloudiness, it should reliably detect the specific cloud features (fog) for which 
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it is designed. 

 
Figure 20  Probability distribution function (pdf) of the ratio of e4-e4_clr for clear and cloudy pixels 
as determined by CALIPSO for ice-free ocean regions. e4 is the 4 µm (Channel 7) derived emissivity 
and e4_clr is the channel 7 emissivity derived from the clear-sky computations 
 
 

 
Figure 21  Same as Figure 20 for ice-free land regions. 
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The ULST is set to true for a given pixel, if any one of the following conditions is met:  
1. The difference between the 3.9 micron emissivity at the nearest warmest center 

(NWC), e4,NWC, and the 3.9 micron emissivity is larger than 0.075.  
a. The description of the NWC is in section 3.3.3.1 
b. This test is only performed when there is a valid NWC (i.e. when e4,NWC is 

greater than 0.0) 
2. If the e4,clear – e4 difference is larger than the threshold for the particular surface 

type, as show in table 3. 
3. If e4 is less than 0.80 

 
If any of the above conditions is met, it is indicative of a low level stratus cloud.

3.4.1.4 Solar Reflectance Cloud Detection Tests 
 
During the day, the reflective channels, particularly the 0.64 µm channel, is extremely 
useful in detecting clouds, as they are much more reflective than land or non-glint ocean 
pixels. However, care must be taken in order to avoid snow, which often gives false cloud 
as it is just as reflective as a cloud is. In order to help detect cloud over snow, the Near 
IR, 1.6 µm, channels can be employed. Finally, the 1.38 µm channel has been shown to 
be extremely helpful in detecting thin cirrus, which can often be undetected by the other 
reflective channels. 

3.4.1.4.1 RGCT – Reflectance Gross Contrast Test 
The Reflectance Gross Contrast Test (RGCT) works on the assumption that clouds 
exhibit larger values of the visible reflectance than clear sky.  Currently, the ACM applies 
a threshold to the 0.65 µm reflectance (Channel 2) over land and water.  This test is not 
applied over known snow/ice surfaces, as determined by the internal snow mask 
described in section 3.3.3, and is not applied when the solar zenith angle is equal or 
exceeds 80o or for pixels located in sun glint regions, as determined by the internal glint 
mask described in section 3.3.3. These restrictions seek to avoid the limb brightening 
affects that occur at large local zenith angles. 
 
The metric used by the RGCT is the observed 0.65 µm.  The clear-sky reflectance, which 
is used to compute the per pixel thresholds for the RGCT test, is computed by modifying 
the assumed clear-sky 0.65 µm surface reflectance values to include the effects of 
gaseous absorption (water vapor and ozone) and the effects of Rayleigh and aerosol 
scattering.  This computation is described in Section 3.4.2.  The source of the surface 
reflectance data is described in the ancillary data section (Section 3.3.2)  It is important to 
note the effects of glint are not captured in this computation and the white-sky albedo 
product does not simulate the reflectance for a given viewing geometry.  However, use of 
this product has proven to add skill over that provided by fixed land or surface-type based 
surface reflectance values. 
 
Figure 22 and Figure 23 give the distributions of the difference of the observed minus the 
clear sky values of the 0.65 µm reflectance computed for clear and cloudy pixels as 
determined by CALIPSO.  As expected, the cloudy distributions range over larger values 
than those seen for clear pixels, which indicate definite skill at unambiguous cloud 
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detection. However, the CALIPSO cloudy distributions do indicate that many cloudy 
pixels have reflectance very near that predicted for clear conditions especially over the 
ocean.  Whether this is due to true presence of very thin cloud or due to a difficulty in 
daytime cloud detection by CALIPSO is still to be determined. 
 
 
 

 
Figure 22  Probability distribution function (pdf) of the difference between the observed  0.65 µm 
(Channel 2) reflectance and the computed clear-sky value for ice-free ocean pixels. 
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Figure 23  Same as Figure 22 for ice-free land pixels. 
 
For the RGCT test, the test metric, χ, is simply the 0.64 µm channel reflectance and is 
compared to a derived threshold for each pixel. For land pixels, the threshold is 
determined as follows: 
 

3333max __*2.10.10 xstddevx clrRclrR ++=ρ  
 
For water pixels, the threshold is as follows: 
 

33max_*2.10.5 xclrR+=ρ  
 
R_clrmax3x3 is the maximum clear sky 0.64 µm reflectance for a 3x3 box centered on the 
pixel being tested, excluding space pixels, and R_clrstddev3x3 is the standard deviation of 
the clear sky 0.64 µm reflectance for a 3x3 box centered on the pixel being tested, 
excluding space pixels. If the clear sky reflectance is not available for a given pixel, then 
the thresholds are set to 45.0% for land pixels and 99.0% for water pixels. If the test 
metric, χ, is greater than the pixel threshold, the test is set to indicate a cloud.

3.4.1.4.2 RVCT - Relative Visible Contrast Test 
The Relative Visible Contrast Test (RVCT) is a solar-reflectance analog to the RTCT.  
The basic premise of the RVCT is that over a small region pixels that are much brighter 
than the darkest pixel in the neighborhood are likely cloudy.  The RVCT metric test uses 
the following metric (χ)in the ACM:  
 

mxm rr µµχ 64.0,33min64.0 −=  
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 Where r0.64 µm  is the observed 0.64 µm reflectance  and rmin3x3, 0.64 µm is the minimum value 
observed over a 3x3 pixel array centered on the pixel being tested, excluding space 
pixels.  The targeted cloud features of the RVCT are small scale clouds and cloud edges.  
However, care must be exercised to avoid the false detection of cloud in the presence of 
coasts and other strong clear sky surface reflectance gradients.  Therefore the test is not 
applied over known snow/ice surfaces (based on ancillary data) or coastal regions, as the 
variability in the surface reflectance is too great. In addition, the RVCT has angular 
restrictions where the scattering is too great, where the scatting angle is larger than 90o. 
Finally, the RVCT is not applied where the reflected energy back to the imager goes 
through a large amount of the atmosphere, which occurs at solar zenith angles greater 
than 83o.  
   
Figure 24 and Figure 25 show the distribution of the RVCT metric computed for clear 
and cloudy pixels as determined by CALIPSO for ocean and land pixels.  As expected, 
there is a separation of the clear and cloudy distributions with clear values being centered 
close to zero and cloudy values distributed over larger values.  Therefore, it does appear 
that the RVCT offers skill in unambiguous cloud detection. 

 
Figure 24  Probability distribution function (pdf) of the difference between the observed 0.65 µm 
(Channel 2) reflectance and the minimum value detected over a 3x3 pixel array for ice-free ocean 
pixels. 
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Figure 25  Same as Figure 24 for ice-free land regions. 
 
The test metric, χ, is compared to a derived threshold for each pixel. For land pixels, the  
threshold is determined as follows for land pixels  
 

33_*40.10 xstddevclrR+=ρ  
 
where R_clrstddev3x3 is the standard deviation of the clear sky 0.64 µm reflectance for a 
3x3 box surrounding a given pixel, excluding space pixels. For water pixels or where 
R_clrstddev3x3 is less than or equal to 0.0 (i.e. smooth surfaces), the threshold is simply 
10.0%. If the test metric, χ, is greater than the threshold for a given pixel, the test is 
marked as being a cloud. 
 

3.4.1.4.3 NIRREF – Near Infrared Reflectance Test (1.6 µm) 
Due to significant differences in the imaginary indices of the refraction index of water 
and ice in some regions of the near-infrared (NIR) spectrum, NIR reflectances are useful 
for detecting water cloud on top of snow and ice covered surfaces. The NIR channels, 
particularly the 1.6µm reflectance are useful in discriminating between snow and clouds, 
as snow has very low 1.6µm reflectance, while the 1.6µm reflectance of clouds remains 
high.  Consequently, both cirrus and optically thick water clouds can be directly 
classified and distinguished from snow using the 1.6µm channel (Warren, 1982). In fact, 
the usefulness of the 1.6µm channel has been demonstrated on both the operational 
Landsat Thematic Mapper satellite (Dozier, 1989; Baglio, 1989) as well as the AVHRR 
instrument. In addition, because of the strong signal of snow in the 1.6µm reflectance, it 
is also used to calculate the Normalized Difference Snow Index (NDSI). Thus, the 1.6µm 
reflectance is a useful test for clouds over snow.  
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Should the 1.6 µm reflectance not be available and the 3.9 µm reflectance is available, 
this test can also use the 3.9 µm reflectance. 
 
However, there are some drawbacks to this test, such as prior knowledge of which pixels 
contain snow and which are snow-free, information provided by the snow mask described 
in section 3.3.2. In addition, there are issues at surface elevations (over 1000 m) as well 
as coastal pixels, as defined by the coast mask. For both the 3.9µm  and 1.6µm the 
NIRREF test is only performed on pixels that are snow as determined by the internal 
snow mask defined in 3.3.3, have a solar zenith angle of less than 80o, are not coast pixels 
as defined  by the internal coast mask defined in section 3.3.3, and  which have a . 
surface height of less than 1000m.  
 
For the pixels that meet the above criteria, if the primary channel for this test (1.6 µm) is 
not available, the 3.9 µm reflectance is considered as the test metric at this point. 
 
Otherwise, if the primary channel (1.6 µm) is available, then the NDSI is calculated for 
the given pixel: 
 

6.164.0

6.164.0

RR
RRNDSI

+

−
=  

 
where R0.64 is the 0.64 µm reflectance and R1.6 is the 1.6 µm reflectance. If the NDSI is 
less than 0.5, the 1.6 µm reflectance for the pixel is considered the test metric. 
 
 
If the test metric is greater than 15%, then the test is marked as being cloud. Otherwise, 
the test is marked as clear. 
 
 

3.4.1.4.4 CIRREF – Cirrus Reflectance Test (1.38 µm) 
The 1.38 µm channel on MODIS has been used successfully to detect thin cirrus 
(Ackerman et al., 2002).  The 1.38 µm channel resides in a strong water vapor absorption 
band that masks the surface under most conditions.  The ACM test is based on the 
MODIS (MOD35) test (Ackerman et al., 2002) and uses a 1.38 µm reflectance as the test 
metric.  The test is applied to all pixels that have a solar zenith angle of less than 80o, 
with a maximum surface height in the surrounding 3x3 box, as determined by the spatial 
uniformity algorithm described in the AIADD, of less than 2000m, and are not snow, as 
determined by the internal snow mask described in section 3.3.3. If the 1.38 µm 
reflectance  is greater than threshold of 5%, then the pixel is marked as being cloud. 
Simulated ABI data will be used to verify the operation of this test before launch. 
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3.4.1.5 Clear Sky Uniformity Tests 
The clear-sky uniformity tests act as filters of the clear pixels to identify clear pixels that 
reside in regions of high spatial heterogeneity and reclassify them as probably clear.  This 
reclassification occurs after the pixel is determined in to be clear and is shown in Figure 
28. If the pixel is clear and either of the uniformity tests has a positive result, then the 4-
level cloud mask for that pixel is set to “probably clear.” Otherwise, the pixel remains 
“clear”. The assumption is that the presence of cloud will increase the local spatial 
heterogeneity beyond the values expected for clear sky.   Currently, the ACM uses two 
tests for spatial heterogeneity which are described below. 
 

3.4.1.5.1 Reflectance Uniformity Test (RUT) 
The RUT is a daytime test based on the local standard deviation of the observed 0.65 µm 
reflectance computed for a 3x3 box surrounding each pixel, as calculated by the spatial 
uniformity algorithm described in the AIADD.  If the standard deviation is greater than a 
threshold, a non-clear result is obtained. The physical basis is the assumption that clear 
regions should exhibit relatively spatially uniform reflectivity over land and ocean. In an 
attempt to make the RUT independent of the surface reflectance, the RUT metric is the 
0.65 µm reflectance standard deviation over a 3x3 box centered on the current pixel, as 
computed by the spatial uniformity framework routine described in the GOES-R AIADD.  
Because of the non-uniformity of coasts and snow, this test is not applied on those pixels. 
In the case of RUT and TUT (below), the standard deviations are always computed using 
3x3 pixel arrays.  No attempt is made to adjust the resolutions to account for the actual 
pixel resolution, which is a function of zenith angle. 
 
In the ACM, the RUT is applied to the 0.65 µm reflectance standard deviation computed 
over a 3x3 pixel array for daytime pixels with solar zenith angles out to 80.0 degrees.  
Figure 26 shows the variation of this quantity for land and ocean pixels plotted as a 
variation of the collocated CALIPSO cloud fraction.   As stated above, the goal of the 
RUT is to separate truly clear pixels from those that are cloud contaminated.  An 
appropriate threshold for the RUT is given by the value for CALIPSO cloud fractions of 
zero (the most clear of pixels).  This analysis shows that the RUT, as formulated here, is 
indeed insensitive to the underlying surface reflectance. Based on the analysis in Figure 
26, the RUT has a threshold for land pixels of the greater of either 0.5 or 0.20 times the 
clear sky reflectance, as described in section 3.3.3, which is atmospherically corrected as 
described in section 3.4.2. For water pixels, the  RUT has a threshold of 1.0.    If the test 
metric, the standard deviation of the 0.65 µm reflectance standard deviation computed 
over a 3x3 pixel array for the current pixel is greater than the threshold (the surrounding 
pixels are non-uniform), then a “true” result is given for the RUT. 
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Figure 26   Variation of the standard deviation of the 0.65 µm reflectance computed over a 3x3 pixel 
array divided by the computed clear-sky reflectance as a function of the CALIPSO cloud fraction.  
Results are separated for land and ocean pixels. 
 

3.4.1.5.2 Thermal Uniformity Test (TUT) 
The thermal analog to the RUT is the TUT (Thermal Uniformity Test) and is based on the 
standard deviation of the observed 11 µm brightness temperature computed on a 3x3 box 
surrounding each pixel.  If the standard deviation is greater than a threshold (the 
surrounding pixels are non-uniform), a non-clear result is obtained (i.e. test is set to 
“yes”).  Again, because of the fact that coasts are inherently non-uniform, no coast pixels 
are used in this test. The thresholds used are increased by the value of 3.0*Γ*Z_std where 
Γ is the lapse rate (7.0 K/km) and Z_std (km) is the 3x3 standard deviation of the surface 
elevation.  The factor 3 accounts for the fact we are assuming a 3-σ departure from the 
mean elevation.   
 
Figure 27 shows the variation of the 3x3 11 µm brightness temperature standard-
deviation as a function of CALIPSO cloud fraction.  Based on the goal of separating truly 
clear pixels from those with cloud contamination, thresholds of 0.6 for water and 1.1 for 
land pixels were chosen as the TUT thresholds. 
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Figure 27  Variation of the standard deviation of the 11 µm brightness temperature computed over a 
3x3 pixel array as a function of the CALIPSO cloud fraction.  Results are separated for land and 
ocean pixels. 

3.4.1.6 Clear-sky Restoral Test 
The function of the clear-sky restoral tests is to “restore” probably clear pixels to the 
clear condition. These tests are used primarily to identify probably clear and probably 
cloudy pixels. In and of itself, spatial heterogeneity is not an unambiguous indication of 
cloud.  For example, thermal fronts on the ocean surface will present gradients in the 11 
µm brightness temperature on the order of are seen in cloud edges. Therefore, this test 
assumes that probably-clear pixels that occur in regions where no cloud detection test 
was able to detect cloud should be classified as clear.  This test considers a 5x5 box 
centered on the current pixel. If the 5x5 box does not fit within the extents of the array 
(ex. the edges of the current segment), then only the available values will be used in the 
calculation of the clear sky restoral. In addition, only valid pixels, as determined by the 
valid pixel mask described in section 3.3.3, and those pixels that are probably clear, as 
determined by the uniformity tests, are used in the clear-sky restoral test. If the current 
pixel is probably clear and the surrounding pixels are not cloudy or probably cloudy, then 
the pixel is restored to “clear”. 
 
 It is important to note that while the results of this test and of the clear-sky uniformity 
tests are included in the output users can ignore the clear-sky restoral results, if desired. 

3.4.1.6.1 Probably-Cloudy Restoral Tests  
The purpose of the Probably Cloudy Restoral test is to classify cloud edges as being 
probably cloudy.  This knowledge is useful for subsequent applications that need to 
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ascertain the confidence of whether a pixel is truly cloud filled.  For this test, if a clear or 
probably clear or probably cloudy pixel exists within the 3x3 pixel array centered on a 
cloudy pixel, that cloudy pixel is reclassified as probably cloudy. If the 3x3 box does not 
fit within the extents of the array (ex. the edges of the current segment), then only the 
available values will be used in the calculation of Probably Cloudy Test. 
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3.4.2 Radiative Transfer Computations for Channel 2 
As described above, the RGCT test operates on the observed Channel 2 reflectance and 
an estimate of its value under clear conditions.  This section describes that computation 
of the clear-sky Channel 2 reflectance.  Note, future implementations of the AIT 
framework may include versions of the CRTM that provide this functionality.   
 

3.4.2.1 Rayleigh Scattering 
The Rayleigh or molecular scattering optical is taken from the cloud mask threshold 
include file and is not computed during execution.  For ABI, we have estimated that the 
total in-band to Channel 2 Rayleigh optical depth is 0.05.  The Rayleigh phase function is 
used to account for the angular distribution of the Rayleigh scattering. 

 
where  µ is the cosine of the scattering angle where scattering angle is defined by the 
solar and viewing geometries. 
 

3.4.2.2 Aerosol Scattering 
To model the aerosol scattering, a Henyey-Greenstein phase function was assumed as 
illustrated below. 
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In the above equation, gaer is the asymmetry parameter. The single scatter albedo (ωo,aer) 
has a value of 1.0, gaer, the aerosol asymetery parameter, is 0.6, and total column aerosol 
optical depth, τaer, is 0.3 for land pixels and 0.2 for water pixels. 
 

3.4.2.3 Gaseous Absorption 
The main absorbing gases in Channel 2 are water vapor and ozone.  The total column 
optical depths (t) are computed using polynomial regressions based on the total 
precipitable water (TPW) and total column ozone (TOZONE).   
 

 
 

 
The coefficients (a,b,c) for the water vapor and ozone optical depth regressions were 
computed using MODTRAN4 and the assumed ABI Channel 2 spectral response 
functions.  For SEVIRI the coefficients are as follows (a,b,c): 
 

Ozone  = (0.000566454, 8.25224e-05, 1.94007e-08) 
TPW = (0.000044758, 0.00264790, -0.0000713698) 
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For ABI the coefficients area as follows 
 

Ozone  = (0.000566454, 8.25224e-05, 1.94007e-08) 
TPW = (0.000044758, 0.00264790, -0.0000713698) 

 
For use in this routine, the ozone and water vapor optical depths are combined in one 
gaseous optical depth, τgas. 

 
 

3.4.2.4 Computation of Clear-sky Reflectance 
The computation of the clear-sky Channel 2 reflectance is done by combining a single 
scattering approximation coupled with an isotropic two-stream approximation.  This 
formulation is a modified version of that used by the MODIS Atmospheres Science Team 
and described by Wang and King (1997). 
 
To compute the clear-sky reflectance, several intermediate terms are needed.  First, a total 
optical depth, τtotal, is computed from the Rayleigh, aerosol and gas optical depths. 

 
In addition, a total optical depth for isotropic scattering computed as follows 

 
where the aerosol optical depth is scaled by 1 – gaer. The effective single scatter albedo, 
ωo, of the entire column is computed as 
 

 

and the effective phase function, P, of the entire column is computed as 
 

 

where τscat,total is the total scattering optical depth. 
. 

 
The Channel 2 clear-sky reflectance, R2,clear is computed from three terms.  The first term, 
Ra,  accounts for the single scattering contribution of the atmosphere.  Ra is computed 
using the following relation 
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where m is the airmass factor ( ), and Tss is the single-scattering transmission 

term computed as 
)*( m
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where µυ is the cosine of the satellite zenith angle and µo is the cosine of the solar zenith 
angle. 
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The second term, Rb, accounts for the contribution of reflectance scattered in the 
atmosphere and then scattered off the surface and is computed as follows 
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where αsfc is the surface albedo and Tiso,total,view is the transmission term computed along 
the viewing direction assuming isotropic scattering. 
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The third term, Rc, is the contribution of reflectance scattered off the surface from the 
direct solar beam and then scattered in the atmosphere.  This term is given by  
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The top of clear-sky single scattering reflectance is computed simply as  
 

)(100 cbass RRRR ++=  
where the factor converts the reflectance to a percentage. The final clear sky reflectance, 
correcting for Rayliegh scattering is simply: 
 

SSclrrawssclear RRTR ,2_,2,2 * +=  
 
Where R2,raw_clr is the uncorrected internal clear sky reflectance  (see the first bullet of the 
“Clear-sky Reflectance” part of section 3.3.2 for more details) and R2,clear is the 
unnormalized, atmospherically corrected clear sky channel 2 reflectance. The same 
atmospheric correction is applied to the the 3x3 maximum uncorrected clear sky 
reflectance before usage in the ACM tests. 

3.4.2.5 Renormalization of Reflectances in the Terminator Region. 
Following a method given by Li and Shibata (2006), the ACM renormalizes reflectance 
values in the terminator region.  This is performed when the solar zenith angle value is 
greater than a value stored in the thresholds file.  This value is currently set to  60.0 
degrees.  The new normalized reflectance is given by 
 

)15225.498(2
35.24

2 ++
=

µµ
µ µRR  

 
where Rµ is the standard reflectance, and µ is the cosine of the solar zenith angle.  This 
equation corresponds to Eq (9) in Li and Shibata (2006).  The goal of this renormalization 
is to improve accuracy for values of the solar zenith angle near 90 degrees. 
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3.4.3 Mathematical Description 

3.4.3.1  Computation of Binary Cloud Mask 
The main product of the ACM is the binary cloud mask.  A clear classification is given to 
pixels where the 4 level cloud mask is clear or probably clear, and is the default fill value 
for the binary cloud mask. A cloudy classification is given to pixels that the 4 level cloud 
mask indicates cloudy or probably cloudy. This computation is used in the validation 
methodology.  

3.4.3.2 Computation of 4-level Mask 
As stated above, the official outputs of the ACM are the binary (yes/no) decisions for 
each test.  The default fill value is set to probably clear for all pixels. The final 4-level 
cloud mask is determined solely from the individual yes/no decisions of the various cloud 
mask tests. The term “cloud detection tests” in refers to the Infrared Cloud Detection 
Tests, Shortwave Infrared Cloud Detection Tests and Solar Reflectance Cloud Detection 
Tests.  The current logic to derive the final 4-level cloud mask is given by the figure 
below in Figure 28.  Currently, it takes only one positive result of any cloud detection test 
to produce a result of “cloudy”. Otherwise, the pixel remains clear. If a pixel is “clear” 
and either of the uniformity tests is are “yes” (i.e. the surrounding pixels are non-
uniform), the pixel is reclassified as “probably clear.” If the pixel is cloudy (i.e. any of 
the cloud detection tests is positive), and the probably cloudy restoral test is set to “true”, 
as described in section 3.4.1.6.1, the pixel is reclassified as “probably cloudy” 
 

 
Figure 28  Schematic illustration of the logic employed to derive a 4-level cloud mask (clear, probably 
clear, probably cloudy and cloudy) from the individual tests results. 
 

3.4.3.3 Computation of Thresholds for Cloud Mask Tests 
As shown in Section 3.4.2, the cloud mask tests used in the ACM do provide some skill 
at separating clear from cloudy pixels.  This section explains how specific thresholds 
were selected.  As stated above, the philosophy of the ACM is to use multiple tests that 
are sensitive to different characteristics of cloud to achieve the specified performance.  
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An inherent assumption is that the thresholds for each test are set conservatively to ensure 
a minimal rate of false detection.  No test is expected to detect all clouds nor is any one 
test allowed to have significant false detection rates.   
 
To demonstrate the impact of threshold selection on the performance of the cloud mask 
test, Figure 29 shows the variation of false and true cloud detection rates for the ETROP 
test over the ice-free ocean.  Figure 29 is derived from the pdfs shown in Figure 2. True 
cloud detection rate is defined as the percentage of all pixels that are correctly detected as 
cloud.  False cloud detection rate is defined as the percentage of pixels that are falsely 
detected as cloud.  The threshold in the ETROP is the derived Channel 14 emissivity 
referenced to the Tropopause.  As the threshold increases, the false cloud rate and true 
cloud rate decrease.  For a threshold set to a value on the left side of the figure (say -0.5), 
the true and false cloud rates sum to 100%.  For threshold values large enough that no 
clouds are detected, both the true and false cloud rates are zero.   

 
Figure 29   Illustration of the variation of true cloud and false cloud detection rates for the ETROP 
test applied over ice-free ocean.  True cloud detection rate is defined as the percentage of all pixels 
that are correctly detected as cloud.  False cloud detection rate is defined as the percentage of pixels 
that are falsely detected as cloud.  The threshold in the ETROP is the derived Channel 14 emissivity 
referenced to the Tropopause.  As the threshold increases, the false cloud rate and true cloud rate 
decrease.  For a threshold set to value on the left side of the figure, the true and false cloud rates sum 
to 100%.  The goal of the ACM is to minimize false detection while maintaining sufficient true 
detection rates. 
 
 
The goal of the ACM is to minimize false detection while maintaining sufficient true 
detection rates.   As Figure 29 shows, there is a range in ETROP threshold where the 
false cloud rate approaches zero and the true cloud rate remains well-above zero.  In the 
ACM, the threshold is selected by its value of false cloud detection rate.  In order to 
select the optimal false cloud detection rate, the Probability of Correct Detection (POD) 
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for the combined binary mask was computed as a function of the allowable maximum 
false cloud detection rate.  POD is computed using the following relationship. 
 

POD = (Number of Correct Cloud Decision + Number of Correct Clear Decisions) / 
Number of Total Decisions 

 
 
As described later, the overall binary cloud mask is given a clear value if no test detects 
cloud and a value indicative of cloud if any test detects cloud.  Figure 30 shows this 
computation generated separately for land and ocean pixels based on all tests combined.   
Based on this analysis, a threshold of 2% on the maximum allowable false cloud 
detection rate maximizes the POD value (which is the official metric of performance for 
the binary cloud mask).  Table 3 shows the thresholds for land, ocean and snow/ice 
surfaces computing using this procedure. Some tests, such as the ETROP, have tests for 
surfaces not shown in Table 3. These are described in their respective sections. 
 
 

 
Figure 30  Illustration of the effect of the false cloud amount threshold applied to each cloud mask 
test on the overall Probability of Correct Detection Metric (POD).  The current F&PS specification 
on POD is 87%.  Maxima POD value are achieved when a maximum false cloud detection rate of 2% 
is used when deriving the thresholds for each test. 
 
 

Table 3. CALIPSO-derived Thresholds from ACM (thresholds for SEVIRI in parenthese).  Thresholds 
represent the values that provide a maximum false cloud detection rate of 2%.  
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Cloud Mask Test Ocean Land Snow/Ice  
ETROP 0.10 0.30 0.4 
ETROP-LRC 0.28 0.30 0.5 
RTCT 3.2 4.1 N/A 
PFMFT 0.8 2.5 1.0 
NFMFT 1.0 2.0 5.0 
RFMFT 0.7 1.0 N/A 
TEMPIR 
(applied as shown 
in 3.4.1.2.3) 

2.0 2.0 2.0 

EMISS_4 0.10 0.46 0.4 
ULST 0.12 (0.2) 0.10 (0.2) 0.12 
RGCT 11.0 19.0 N/A 
RVCT 8.0 10.5 N/A 
NIRREF N/A N/A 15.0 
TUT 0.6 1.1 land or ocean 

thresh, depending 
on land mask 

RUT 0.2 1.0 N/A 
 
 

3.4.4 Algorithm Output 
The following section describes the three sets of output from the ACM algorithm.  To 
meet 15 minute refresh requirement, the clear sky mask only needs to be run once every 
15 minutes. 

3.4.4.1  Output 

3.4.4.1.1 Primary output 
 
The primary output of the ACM is the binary cloud mask (yes/no) cloud mask, and is 
initialized to clear. The binary cloud mask is derived from the  4-level cloud mask, as 
described in Section 3.4.3.1.  The 4 level cloud mask values, which is initialized to 
“probably clear”,  are given below in Table 4. 
 
Table 4. Cloud mask values and their descriptions. *The ACM is written to be insensitive to the order of the 
numerical values of the cloud mask and the values are stored in a static structure.   Switching this order 
(for example to the JPSS convention) poses no problems.  

Cloud Mask 
Value 

Numerical 
Value* 

 Description 

Clear 3 Pixels that passed no test for cloud and failed a test for 
spatial heterogeneity 

Probably clear 2 Pixels that passed no test for cloud but passed tests for 
spatial heterogeneity 

Probably 
cloudy 1 Pixels that passed a test for cloud and passed a test for 

cloud edges 
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Cloudy 0 Pixels that passed a test for cloud and failed a test for 
cloud edges 

 

3.4.4.1.2 Intermediate and diagnostic output 
 
The algorithm also produces four bytes of output which are comprised of bits holding the 
test results (no = 0, yes = 1) for each of the various tests and flags that are used to 
compute the 4-level cloud mask as an intermediate/diagnostic product and are required 
inputs for other algorithms. These are all initialized to no (0) at the beginning of each 
segment of data being processed and are only turned to yes (1), when the conditions are 
met for each test. This output is shown and described in Table 5. 
 
Table 5. Cloud mask tests and flags and their descriptions. 

Byte Bit  Description 
Ancillary Data Flags 
1 1 Cloud mask attempted flag 
1 2 Day/night flag 
1 3 Terminator flag 
1 4 Land/Ocean flag 
1 5 Coast/No Coast flag 
1 6 Glint / No Glint flag 
1 7 Desert / no desert flag 
1 8 Snow / no snow flag 
2 1 Cold Surface 
Clear-Sky Spatial Uniformity Tests 
2 2 RUT – Reflectance (0.63 µm) Uniformity Test 
2 3 TUT – Thermal (11 µm BT) Uniformity Test 
Infrared Cloud Detection Tests 
2 4 RTCT – Relative Thermal Contrast Test  
2 5 ETROP – Emissivity at Tropopause Test 
2 6 PFMFT – Positive FMFT (Split-Window BTD) Test 
2 7 NFMFT – Negative FMFT (Negative Split-Window BTD) Test 
2 8 RFMFT – Relative FMFT (Split-Window BTD) Test 
3 1 CIRH20 – Cirrus Water Vapor Test 
3 2 TEMPIR - Temporal IR Test 
3 3 TERM_THERM_STAB – Terminator Temporal IR Test 
Solar Reflectance Cloud Detection Tests 
3 4 RGCT – Reflectance Gross Contrast Test 
3 5 RVCT – Relative Visible Contrast Test 
Shortwave Solar Reflectance Cloud Detection Tests 
3 6 NIRREF – Near-IR Snow Test (1.6 µm) 
3 7 CIRREF- Near IR Cirrus Test (1.38 µm) 
Shortwave IR Thermal Tests 
3 8 EMISS4 – 4 µm Emissivity Test 
4 1 ULST – Uniform Low Stratus Test 
Restoral Tests 
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4 2 PCLR – Probably clear restoral test 
4 3 PCLD – Probably cloudy test 
Extra bits  
4 4 blank 
4 5 blank 
4 6 blank 
4 7 blank 
4 8 blank 
 
The description of the first nine bits of the test bit output is as follows: 

1. Valid Cloud mask – this is “yes” if the pixel has a valid 11µm BT and the clear 
sky 11 µm BT is also valid (greater than 200K). Valid pixels are 1 and non-valid 
pixels are 0. 

2. Day/night mask – This is determined by the day/night mask described in Section 
3.3.3. Day pixels are 1 and night pixels are 0. 

3. Terminator – This is determined by the Terminator mask described in Section 
3.3.3. Terminator pixels are 1 and non-terminator pixels are 0. 

4. Land/water - This is determined by the land/ocean mask described in Section 
3.3.3. Land and coast pixels are 1, water pixels are 0. 

5. Coast - This is determined by the coast mask described in Section 3.3.3. Coast 
pixels are 1, non-coast pixels are 0. 

6. Glint - This is determined by the derived glint mask described in Section 3.3.3. 
Glint pixels are 1 and non-glint pixels are 1.  

7. Desert - This is determined by the desert mask described in Section 3.3.3. Desert 
pixels are 1 and non-desert pixels are 0 

8. Snow - This is determined by the Terminator mask described in Section 3.3.3. 
Snow pixels are 1 and non-snow pixels are 0. 

9. Cold surface - This is determined by the cold surface mask described in Section 
3.3.3. Cold surface pixels are 1 and non-cold surface pixels are 0. 

3.4.4.2   Quality Flags 
In addition to the algorithm output, a pixel level quality flag will be output.  These quality 
flags are used by both the primary and intermediate products. The values will be assigned 
as follows: 
 
Flag Value Description 

0 Valid, good quality cloud mask 
1 Invalid pixel due to space view 
2 Invalid or reduced quality pixel due to being outside of sensor 

zenith range 
3 Invalid earth pixel due to bad data (bad or missing 11 µm BT or 

bad/missing clear sky 11 µm BT) 
4 Reduced quality Cloud mask (bad 3.9µm pixel) 
5 Reduced quality 0.64 µm tests 
6 Reduced quality due to other bad channels (excluding 0.64, 3.9 or 

11 µm) 
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The quality flag is initialized to invalid (1) for all pixels. If the pixel is determined to be a 
space pixel as determined by the space mask, the quality flag remains “invalid due to 
space pixel” (1). If the pixel is an earth pixel with a local zenith angle of greater than 70 
degrees, the quality flag is set to “Invalid or reduced quality pixel due to being outside of 
sensor zenith range” (2). If the pixel is an earth pixel with a local zenith angle of less than 
70, but has an invalid 11 µm brightness temperature or invalid 11 µm clear sky brightness 
temperature, the pixel is considered “Invalid earth pixel due to bad data” (3). If neither of 
these criteria are met, then the quality flag for the pixel is set to “Valid” (0).  
 
After all of the cloud mask tests have been completed, two further tests on the quality of 
the cloud mask are performed.  The first is to check if there is valid 3.9 µm data by 
checking the bad pixel flag. If the 3.9 µm is not valid for a given pixel, then the quality 
flag is set to “Reduced quality” (4). Should the 3.9 µm be good, and the pixel is a 
daytime pixel, a further check of the visible channels is performed. If the pixel is a 
daytime pixel and the clear sky 0.64 µm reflectance for that channel is missing or the 
0.64 micron channel bad pixel flag is set to “bad,” then the ACM quality flag is set to 
“Reduced quality 0.64 µm tests” (5).  If other channel is bad, the quality flag is set to (6). 
 

3.4.4.3  Metadata 
In addition to the algorithm output and quality flags, the following will be output to the 
file as metadata for each file, where values are calculated for those pixels with a ACM 
DQF of  0 (good): 
 

• Percent of pixels that are clear  
• Percentage of cloud mask categories (4 cloud mask categories: Clear, Probably 

Clear, Probably Cloudy and Cloudy) 
o Number of “good” pixels with a 4-level cloud mask value of “clear” / total 

number of “good pixels” 
o Number of “good” pixels with a 4-level cloud mask value of “probably 

clear” / total number of “good pixels” 
o Number of “good” pixels with a 4-level cloud mask value of “probably 

cloudy” / total number of “good pixels” 
o Number of “good” pixels with a 4-level cloud mask value of “cloudy” / 

total number of “good pixels” 
• For each cloud mask category, the following information is required: 

o Count of pixels for the cloud mask category 
o Definition of cloud mask category 

• Total number of cloud mask points 
• Percentage of pixels that are within the terminator  

o # of “good” pixels that have a solar zenith angle of greater than 87.0o and 
less than 93.0o / total number of “good” pixels 

• Minimum, Maximum and Mean observation-calculation for all-sky (Channels 
14,15) 

• Minimum, Maximum and Mean observation-calculation for clear-sky (Channels 
14,15) 
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• Standard deviation between observation and calculation for all-sky (Channels 
14,15) 

• Standard deviation between observation and calculation for clear-sky (Channels 
14,15) 
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4 Test Data Sets and Outputs 

4.1 Simulated/Proxy Input Datasets 
As described below, the data used to test the ACM included SEVIRI observations 
collocated with CALIPSO data and with MODIS granules. Data from August 2006 
(summer), February 2007 (winter), April 2007 (spring) and October 2007 (fall) were used 
to span the entire SEVIRI domain and encompass a full range of conditions. The rest of 
this section describes the proxy and validation data sets used in assessing the 
performance of the ACM. Table 6 shows the channel mapping between the proxy dataset 
(SEVIRI) and ABI:  
 
Table 6. ABI and SEVIRI channel numbers with associated wavelengths for ABI 

ABI Channel Number SEVIRI Channel Number Wavelength (µm) 
2 1 0.64 
4 n/a 1.38 
5 3 1.61 
7 4 3.9 
9 n/a 7.0 
10 6 7.4 
11 7 8.5 
14 9 11.2 
15 10 12.3 
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4.1.1 SEVIRI Data 
SEVIRI provides 11 spectral channels with a nadir spatial resolution of 3 km and a 
temporal resolution of 15 minutes.  SEVIRI provides the best source of data currently for 
testing and developing the ACM.  The figure shown below is a full-disk SEVIRI image 
from 12 UTC on August 10, 2006.  Except for the 1.38 µm channel, SEVIRI provides an 
adequate source of proxy data for testing and developing the ACM.   The SEVIRI data 
was provided by the UW SSEC Data Center. 
 
 

 
Figure 31  Fulldisk 0.63, 0.86 and 11 µm false color image from SEVIRI for 12 UTC on August 10, 
2006. 
 



 

 74 

4.1.2 CALIPSO Data 
With the launch of CALIPSO and CloudSat into the Earth Observing System (EOS) A-
Train in April 2006, the ability to conduct global satellite cloud product validation 
increased significantly.  Currently, CALIPSO cloud detection results are used to validate 
the cloud detection of the ACM.  The CALIPSO data used here are the 1 km cloud layer 
results (Vaughan et al., 2005).   
 

 

 
Figure 32  Illustration of  CALIPSO data used in this study.  Top image shows a 2D backscatter 
profile.  Bottom image shows the detected cloud layers overlaid onto the backscatter image.  Cloud 
layers are colored magenta. (Image courtesy of Michael Pavolonis/NOAA) 
 
The individual CALIPSO results within each SEVIRI pixel were averaged to give a cloud 
fraction for each SEVIRI pixel.  This cloud fraction is compared to the 4-level ACM 
results in the next sections. Using the CALIPSO cloud fraction product, only pixels that 
coincide with at least four CALIPSO laser shots are used for evaluation. The error is 
estimated as the percentage of pixels for each cloud mask category that falls outside the 
following ranges of CALIPSO cloud fraction: the requirements state that this is a “Clear-
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sky” mask, and as such, the probably clear and clear pixels are called “Clear” and 
probably cloudy and cloudy pixels are called “Cloud.” In addition, for the analysis with 
CALIPSO, only cloud fractions equal to 100% were considered as cloud while all other 
conditions were considered clear pixels by CALIPSO. 
 

4.2 Output from Simulated/Proxy Inputs Datasets  
The ACM was generated using the SEVIRI data from the entire month of August 2006 as 
well as 2 weeks in February 2007 (winter), April 2007 (spring) and October 2007 (fall) 
were used to span the entire SEVIRI domain and encompass a full range of conditions. 
During both the TRR and subsequent tests, comparisons between the online (Framework) 
and offline (Cloud AWG) output of the ACM, when the same inputs were used, showed 
an exact match of the Clear Sky Mask. These tests were conducted under different 
conditions using the same input for both the online and offline tests. Figure 33 shows the 
ACM 4-level mask with the clear value replaced by the surface temperature.  This image 
is for 12 Z on August 10, 2006 and corresponds to the false-color image shown in Figure 
31.  The CALIPSO and SST analyses were then applied to the ACM results and used to 
generate the performance estimates provided below. 
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Figure 33  Example ACM 4-level cloud mask from 12 UTC August 10, 2006 produced from SEVIRI 
on MET-8.  Where clear, the derived surface temperature is shown with the units of K. 
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4.2.1 Precisions and Accuracy Estimates 
To estimate the performance and accuracy of the ACM, we have used the MODIS Cloud 
Mask product (MOD35/MYD35) and CALIPSO data as described above.  This section 
will present our analysis methodology for estimating the precision and accuracy.  The 
next section will provide the quantitative results in terms of the F&PS specifications. 
 

4.2.1.1 CALIPSO Analysis 
The CALIPSO/CALIOP data (hereafter referred to as CALIPSO) provides unique 
information on the cloud fraction, which can be used to validate the ACM.  To do this 
analysis, a collocation tool has been developed to determine the relevant information 
provided by CALIPSO for each collocated SEVIRI pixel.  This tool has been applied to 
all SEVIRI data for the datasets specified in section 4.1.  For each SEVIRI pixel that is 
collocated with CALIPSO data, the following information is available. 
 

• Time difference between SEVIRI and CALIPSO 
• Number of cloud layers observed by CALIPSO 
• Cloud fraction 

 
In addition to the above information, the SEVIRI 11 µm radiances and the computed 
clear-sky radiances to estimate the cloud emissivity assuming the cloud existed at the 
height given by CALIPSO.  The analysis shown in this section provides the performance 
of the ACM based on cloud height (Zc) and emissivity (ec) as provided by CALIPSO.  
The height bins were set to a width of 1 km thick and range from 0 to 20 km.  The cloud 
emissivity bins were to a width of 0.1 and range from -0.2 and 1.2.  Emissivity less than 0 
imply the observed radiance was less than the clear-sky radiance and emissivities greater 
than 1.0 implies that the observed radiance was greater than the blackbody emission at 
the CALIPSO cloud temperature.   
 
The results of comparing the CALIPSO cloud fraction to values of the ACM at the pixel-
level are shown in the figures below.  Figure 34 shows the distribution of cloudy points in 
Zc-ec space from the 8-weeks of data from 4 seasons.  The sample size is roughly 32000 
pixels.  As stated above, these points occurred during periods of co-incidence between 
SEVIRI and CALIPSO.   Figure 34 shows that low clouds were dominant over this 
period with a secondary peak of high thin cirrus.  It is important to note the CALIPSO 
emissivity calculation is very uncertain for low clouds.  However, low emissivities 
always imply observed radiances that are very close to the assumed clear-sky values. 
 
Figure 35 shows the distribution in Zc-ec space of the clouds detected by CALIPSO that 
were missed by the ACM.  The values in Figure 35 show the fraction of missed clouds 
computed from the number of missed clouds divided by the total number of cloudy pixels 
in each Zc-ec bin.  The total number of cloudy pixels in each Zc-ec bin is shown in Figure 
34.  This analysis reveals that the ACM performs well for all clouds with ec > 0.2 except 
for very low clouds (Zc < 1 km).  The highest rate of missed clouds (71%) occurs for 
values of ec < 0.2 and for Zc < 2 km.  The ACM also misses some high clouds for values 
of ec < 0.1. 
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Figure 34  Distribution of cloudy pixels determined by CALIPSO displayed as a function of 
CALIPSO-derived cloud height and cloud emissivity.  Data  observed during simultaneous SEVIRI 
and CALIPSO periods over 8 weeks from 4 seasons in 2006 and 2007. 
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Figure 35  CALIPSO-derived height and emissivity distribution of pixels that were cloudy as 
observed by CALIPSO but classified as clear by the ACM.  Values are fractions of missed cloudy 
pixels over the total number of CALIPSO-derived cloudy pixels in each Zc-ec bin. Light gray 
indicates no data. 
 
Table 7 shows the probability of correct detection (POD) for the binary ACM results 
compared to CALIPSO.  False cloud is the percentage of falsely detected cloud pixels 
while false clear is the percentage of falsely detected clear pixels. 
 
The number of correct cloud decisions is computed as the number of pixels where ACM 
gave a cloudy results and the CALIPSO cloud fraction was greater than 0.8.  The number 
of correct clear decisions was computed as the number of pixels where ACM gave a clear 
decision and the CALIPSO cloud fraction was less than 0.2 
Table 7. Computed POD numbers for the 8 weeks of SEVIRI/CALIPSO taken over 4 seasons during 2006 – 
2007. 

 POD False Cloud False Clear 
Ocean-Day 91.9% 4.1% 4.0% 

Ocean-Night 89.4% 3.3% 7.2% 
Ocean 90.9% 3.8% 5.4% 

Land-Day 93.9% 4.6% 1.4% 
Land-Night 89.5% 2.2% 8.3% 

Land 92.2% 3.7% 4.1% 
Total 

(Land/Ocean + 
Day/Night) 

91.4% 3.7% 4.9% 
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4.2.1.2 MODIS Analysis 
As stated above, CALIPSO provides our source of cloudiness information that is used to 
derive and verify the ACM.  To complement the CALIPSO analysis, the ACM was also 
compared to the official NASA Goddard MODIS cloud mask, which is also known as 
MYD35 (Ackerman et al., 1988; Ackerman et al., 2002). The MYD35 provides a 4-
category cloud mask at a spatial resolution of 1 km.  It has become a widely-used cloud 
mask for many MODIS applications.   
 
To compare the ACM results to MODIS, the ACM was processed through using MODIS 
granules for a single day. Because the input to the ACM for this analysis was the MODIS 
imagery, the analysis was able to compare the MYD35 output and the output of the ACM 
directly. Figure 36 shows a direct comparison of the ACM applied to MODIS as 
compared to the MYD35 results.  Regions that are white represent regions where both 
MYD35 and the ACM gave cloudy results.  Regions that are blue or green represent areas 
where both MYD35 and the ACM gave clear results.  Regions that are red are those 
where MYD35 gave cloudy results and the ACM gave a clear result.   Finally, cyan 
regions are those where the ACM detected cloud and the MYD35 did not.  There does 
appear to be a general preference for the ACM to detect more cloud than MYD35 in the 
presence of small scale cloudiness and cloud edges.  When doing an analysis over the 
entire granule and assuming that MYD35 is correct, a POD of 0.97 is computed.  This 
value is above the F&PS specification of 87%.  The cloud fractions are also in rough 
agreement. The ACM was run over the course of a day, resulting in a total POD with 
MODIS of 91%. While this was just a single day, the results covered a wide range of 
conditions and land types. 
  
In summary, while any passive satellite product cannot be considered a source of 
validation for another passive satellite product, the MYD35 comparison does provide 
evidence that the ACM is performing well and as expected.  This analysis is being 
applied to many MODIS and SEVIRI datasets and more robust statistics will be 
generated.   
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Figure 36  Comparison of MODIS (MYD035) and the ACM applied to SEVIRI data on June 13, 2008 
at 18:25 UTC.   Legend of images contains POD and skill scores computed for all pixels. 
 
 

4.2.1.3 EUMETSAT CM Comparison Analysis 
 
Because SEVIRI was being used as a proxy dataset, another source of comparison is the 
EUMETSAT Meteorological Product Extraction Facility (MPEF) Cloud Mask product 
(Lutz, 1999) can be performed. This cloud mask is the official real-time cloud mask for 
SEVIRI from EUMETSAT. A similar comparison to that done above for MODIS was 
done using two days worth (one summer, one winter) of SEVIRI data. Figure 37 shows 
the result of one image from this analysis. 
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Figure 37. Comparison of EUMETSAT MPEF and the ACM applied to SEVIRI data on August 3, 
2006 at 12:00  UTC.   Legend of images contains POD and skill scores computed for all pixels. 
 
As before, regions that are white represent regions where both EUMETSAT/MPEF and 
the ACM gave cloudy results.  Regions that are blue or green represent areas where both 
MPEF and the ACM gave clear results.  Regions that are red are those where MPEF gave 
cloudy results and the ACM gave a clear result.   Finally, cyan regions are those where 
the ACM detected cloud and the MPEF did not. 
 
When doing an analysis over the entire image and assuming that MPEF cloud mask is 
correct, a POD of 0.91 is computed, above the required 87% POD as specified in the 
F&PS. In addition, the cloud fractions between the two are also in rough agreement. Over 
the course of two days (Aug 3, 2006 and Feb 3, 2007), from over 2E9 points of 
comparison, the resulting total POD with EUMETSAT was 87.5%. While this is just over 
the requirements in the F&PS, it should be noted that we noted several regions of 
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probably false cloud detections in the MPEF product. One of these areas is off the coast 
of Nambia shown below in  
 

 
Figure 38. SEVIRI "True" color (0.64, 0.86, 1.61µm) image from on August 3, 2006 at 12:00  UTC. 
 
As can be seen from the EUMETSAT/SEVIRI “natural” color image, there are no clouds 
off the coast of Nambia. However, the MPEF cloud mask marks the area as clear, while 
the ACM marks the area as clear. Similar cases of disagreement between the ACM and 
other successful operational masks like MPEF are also seen.  This highlights the 
difficulty in validating one mask with another and helps explain our reliance on 
CALIPSO for quantitative validation.   
 

4.2.2 Error Budget 
The F&PS states that the probability of correct detection (POD) for the ACM should be 
greater than 87%.  The F&PS specification applies to the binary mask.  The results of the 
binary cloud mask are presented in the Table 6 where the CALIPSO 1km Cloud Layer 
product is assumed to be the truth.  From this analysis, the ACM is meeting threshold 
performance for land and ocean regions for all solar viewing geometries (day and night).  
 
As described earlier, there is reason to believe that CALIPSO is overestimating the 
amount of missed clouds by the ACM especially during the day.  Therefore, to 
complement the CALIPSO analysis, a comparison was made between the ACM and the 
MODIS cloud mask (MYD35) on collocated SEVIRI and MODIS pixels.  For the scene 
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shown and for other scenes, the POD numbers for the ACM relative to MODIS exceed 
the goal values set up in the F&PS. 
 
The most important metric of the ACM is that it delivers useful information on the 
presence of cloud to downstream algorithms.  To do that, we have worked on 
incorporating tests from both other AWG teams as well incorporating tests from other 
cloud masks, such as the MODIS (MOD/MYD35) and EUMETSAT cloud mask groups.  
. 
 

5 Practical Considerations 

5.1 Numerical Computation Considerations 
The ACM is implemented sequentially.  Because some cloud detection tests rely on the 
values of the ancillary data flags, the ancillary data flags need to be computed first.   All 
tests are applied before the final cloud mask is determined.  The ACM is currently 
implemented into the AIT Framework and uses its numerical routines for processing, as 
referenced in the GOES-R AIADD. 

5.2 Programming and Procedural Considerations 
The ACM requires knowledge of spatial uniformity metrics that are computed for each 
pixel using pixels that surround it.  In addition, the temporal tests require information 
from the previous image.  Beyond this reliance, the ACM is purely a pixel by pixel 
algorithm. 

5.3 Quality Assessment and Diagnostics 
 
The following procedures are recommended for diagnosing the performance of the ACM. 

• Monitor the percentage of pixels falling into each ACM cloud mask values.  
These values should be quasi-constant over a large area. 

• Derive a surface temperature from all pixels of the ACM.  Compute the 
distributions of the observed – background surface temperature for each ACM 
value.   

• Periodically image the individual test results to look for artifacts or non-physical 
behaviors. 

• Maintain a close collaboration with the other teams using the ACM in their 
product generation. 

5.4 Exception Handling 
The ACM includes checking the validity of each channel before applying the appropriate 
test.  The ACM also expects the main processing system (i.e., the AIT Framework) to 
flag any pixels with missing geolocation or viewing geometry information. 
 
The ACM does check for conditions where the ACM cannot be performed.  If the 11 µm 
channel measured or clear sky BT is saturated or missing, there is no attempt at 
processing the cloud mask, as it is a key channel in numerous tests for the ACM. If other 
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channels are saturated or missing, the corresponding test is not performed. A quality flag 
is set, which indicates the quality of the cloud mask for that particular pixel. The 
conditions for the quality flags are described in Section 3.4.4.2.   

5.5 Algorithm Validation 
 
This section is to be completed upon submission of validation plan. 
 

6 ASSUMPTIONS AND LIMITATIONS 
The following sections describe the current limitations and assumptions in the current 
version of the ACM. 
 

6.1 Performance 
 
The following assumptions have been made in developing and estimating the 
performance of the ACM.  The following list contains the current assumptions and 
proposed mitigation strategies. 
 

1. NWP data of comparable or superior quality to the current 6 hourly GFS 
forecasts are available.   (Use longer range GFS forecasts or switch to another 
NWP source – ECMWF). 

 
2. RTM calculations are available for each pixel. (Use reduced vertical or spatial 

resolution in driving the RTM). 
 

3. High quality snow maps are available. (Use snow information from NWP). 
 
4. Background snow-free surface reflectances will be available. (Use pre-

computed reflectances stored as function of surface type). 
 

5. All of the static ancillary data is available at the pixel level. (Reduce the 
spatial resolution of the surface type, land mask and or coast mask). 

 
6. The processing system allows for processing multiple pixels at once for 

applying the spatial uniformity tests.  (No mitigation possible) 
 

7. The processing systems allows for ingesting previous output for applying the 
temporal tests. (Make temporal tests optional) 

 

6.2 Assumed Sensor Performance 
 
It is assumed that the ABI sensor will meet its current specifications.   However, the 
ACM will be dependent on the following instrumental characteristics: 
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• It is critical that, at minimum, the 11 µm channel and clear sky 11 µm channel 
data are available. If these are not available, then the cloud mask cannot be 
performed. If any of the required channels are missing, the cloud mask will be 
degraded and the quality flags will be marked as such. 

• The spatial uniformity tests in ACM will be critically dependent on the amount of 
striping in the data.   

• Unknown spectral shifts in some channels will cause biases in the clear-sky RTM 
calculations that may impact the performance of the ACM. 

• Errors in navigation from image to image will affect the performance of the 
temporal tests. 

• If the 7.4 µm channel is not available, the 7.0 µm can be used for the water vapor 
channel in the CIRH20 test. 

• The SEVIRI instrument, which was used as a proxy data source, has a winder 3.9 
µm channel, which encompasses part of the CO2 absorption in the earth’s 
atmosphere, than the corresponding channel on ABI. As such, the thresholds for 
the EMISS4 and ULST tests will need to be adjusted accordingly after launch, 
utilizing data from spacebased lidars. 

 

6.3 Pre-Planned Product Improvements 
This section contains the potential future enhancements to the algorithm, the limitations 
they will mitigate, and possible and useful related information and links.  
 
The ACM serves many other applications.  Its development is therefore tied to the 
development and feedback from the other algorithms.  At this point, it is therefore 
difficult to predict what the future modifications will be.  However, the following list 
contains our current best guess of the future ACM modifications. 

6.3.1 Optimization for Ocean Applications 
The cloud detection accuracy requirements of the SST and aerosol applications over the 
ocean are very strict.  It is recognized that specialized tests for these applications will be 
necessary.  Coordination with the Ocean Application Team regarding the ACM algorithm 
and output is being done to incorporate their experience and to ensure the ACM is 
adequate for their needs. 
 

6.3.2 Optimization for Land Applications 
The ACM performance over land also needs to be optimized for the Land Application 
Team’s algorithms.  Coordination with the Land Application Team regarding the ACM 
algorithm and output is being done to allow for their feedback and to ensure the ACM is 
adequate for their needs. 
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Appendix 1: Common Ancillary Data Sets 
 

1. COAST_MASK_NASA_1KM 

a. Data description 
 

Description: Global 1km land/water used for MODIS collection 5. 
Filename:  coast_mask_1km.nc 
Origin: Created by SSEC/CIMSS based upon NASA MODIS collection 
5.  
Size: 890 MB. 
Static/Dynamic: Static  

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
 
 

2. DESERT_MASK_CALCLTED 

a. Data description 
 
Description: Desert mask calculated using LAND_MASK_NASA_1KM 
and SFC_TYPE_AVHRR_1KM 
Filename: N/A 
Origin: N/A  
Size: N/A 
Static/Dynamic: N/A 
 

b. Interpolation description 
 

The interpolation is based on the surface type and land mask.  No direct 
interpolation is used in the desert mask calculation, but it is reliant on the 
interpolation found in its dependencies.  
  
The procedure of desert mask calculation is: 
Desert mask is first initialized to “no desert”, then the land mask is 
checked. In the case of LAND, the surface type is then checked. The 
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desert mask is set as “NIR Desert” if the surface type is 
“wooded_grass_sfc”, “closed_shrubs_sfc”, “open_shrubs_sfc”, 
“grasses_sfc”, or “croplands_sfc”, and is set as “bright_desert” if surface 
type is “bare_sfc”. 
 

3. LAND_MASK_NASA_1KM 

a. Data description 
 

Description: Global 1km land/water used for MODIS collection 5 
Filename: lw_geo_2001001_v03m.nc 
Origin: Created by SSEC/CIMSS based on NASA MODIS collection 5 
Size: 890 MB. 
Static/Dynamic: Static  

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 

 

4. NWP_GFS 

a. Data description 
 

 Description: NCEP GFS model data in grib format – 1 x 1 degree 
(360x181), 26 levels  

 Filename: gfs.tHHz.pgrbfhh 
Where, 
HH – Forecast time in hour: 00, 06, 12, 18 
hh – Previous hours used to make forecast: 00, 03, 06, 09  

Origin: NCEP  
Size: 26MB 
Static/Dynamic: Dynamic 

b. Interpolation description 
 

There are three interpolations are installed: 
 
NWP  forecast interpolation from different forecast time: 
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Load two NWP grib files which are for two different forecast time and 
interpolate to the satellite time using linear interpolation with time 
difference. 

 
Suppose: 
 
 T1, T2 are NWP forecast time, T is satellite observation time, and 
 T1 < T < T2. Y is any NWP field. Then field Y at satellite observation 
time T is: 
 

Y(T) = Y(T1) * W(T1) + Y(T2) * W(T2) 
 
Where W is weight and 
   

W(T1) = 1 – (T-T1) / (T2-T1) 
W(T2) = (T-T1) / (T2-T1) 

 
 
NWP forecast spatial interpolation from NWP forecast grid points. 
This interpolation generates the NWP forecast for the satellite pixel 
from the NWP forecast grid dataset.   
 

The closest point is used for each satellite pixel: 
 
1) Given NWP forecast grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to 

the satellite pixel. 
 
 

NWP forecast profile vertical interpolation 
 
Interpolate NWP GFS profile from 26 pressure levels to 101 pressure 
levels 
 
For vertical profile interpolation, linear interpolation with Log 
pressure is used: 

 
Suppose: 
  
y is temperature or water vapor at 26 levels, and y101 is temperature 
or water vapor at 101 levels. p is any pressure level between p(i) and 
p(i-1), with p(i-1) < p <p(i). y(i) and y(i-1) are y at pressure level p(i) 
and p(i-1). Then y101 at pressure p level is:  

 
y101(p) = y(i-1) + log( p[i] / p[i-1] ) * ( y[i] – y[i-1] ) / log ( 
p[i] / p[i-1] ) 
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5. SFC_ELEV_GLOBE_1KM 

a. Data description 
 

 Description: Digital surface elevation at 1km resolution. 
 Filename:  GLOBE_1km_digelev.nc 

Origin: NGDC  
Size: 1843.2 MB 
Static/Dynamic: Static 

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
 
 

6. SFC_EMISS_SEEBOR  

a. Data description 
 

 Description: Surface emissivity at 5km resolution 
 Filename:  global_emiss_intABI_YYYYDDD.nc 
  Where, YYYYDDD = year plus Julian day 

Origin: UW Baseline Fit, Seeman and Borbas (2006).   
Size: 693 MB x 12 
Static/Dynamic: Dynamic  

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
 

7. SNOW_MASK_IMS_SSMI 

a. Data description 
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 Description: Snow/Ice mask, IMS – Northern Hemisphere, SSM/I – 
Southern Hemisphere 

 4km resolution – the 25 km SSM/I has been oversampled to 4km 
 Filename: snow_map_4km_YYMMDD.nc 

Origin: CIMSS/SSEC 
Size: 39 MB. 
Static/Dynamic: Dynamic  

b. Interpolation description 
 

The closest point is used for each satellite pixel: 
 
1) Given ancillary grid of large size than satellite grid 
2) In Latitude / Longitude space, use the ancillary data closest to the 

satellite pixel. 
 
 

8. SUNGLINT ANGLE 

a. Data description 
 

 Description: Sunglint Angle Calculation 
 Filename: N/A 

Origin: N/A 
Size: N/A 
Static/Dynamic: N/A  

b. Description 
 

//Calculating sunglint angle 
float32 SunGlintAng(float32 SOLZA, float32 SENZA, float32 SOLAZ, 
float32 
SENAZ) 
{ 
    float32 SunGlintA = Missing_Value; 
    float32 DegreeToRadiance = 3.1415926/180.0; 
    float32 RadianceToDegree = 180.0/3.1415926; 
    float32 Temp1 = 
cos(SOLZA*DegreeToRadiance)*cos(SENZA*DegreeToRadiance); 
    float32 Temp2 = 
sin(SOLZA*DegreeToRadiance)*sin(SENZA*DegreeToRadiance); 
    float32 Temp3 = cos((180.0-(SOLAZ-SENAZ))*DegreeToRadiance); 
    SunGlintA = acos(Temp1+Temp2*Temp3)*RadianceToDegree; 
 
 return SunGlintA; 
} 
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9. LRC 
 

a. Data description 
 
Description: Local Radiative Center Calculation 
Filename:  N/A 
Origin: NOAA / NESDIS  
Size: N/A 
Static/Dynamic: N/A 
 

b. Interpolation description 
It should be first noted that the original description of the local radiative center (LRC) 
calculation was done by Michael Pavolonis (NOAA/NESDIS) in section 3.4.2.2 of 80% 
GOES-R Cloud Type Algorithm Theoretical Basis Document (ATBD). This description 
takes several parts of the original text as well as two of the figures from the original text 
in order to illustrate the gradient filter. In addition, the analysis performed by Michael 
Pavolonis (NOAA/NESDIS) regarding the number of steps taken is also shown in the 
LRC description. This description gives an overview and description of how to calculate 
the local radatitive center. The authors would like to recognize the effort that was done by 
Michael Pavolonis in the development of this algorithm. 
 
The local radiative center is used in various GOES-R AWG algorithms as a measure of 
where the radiative center for a given cloud is located, allowing for the algorithm to look 
at the spectral information at an interior pixel within the same cloud while avoiding the 
spectral information offered by pixels with a very weak cloud radiative signal. A 
generalized definition of the LRC is that, for a given pixel, it is the pixel location, in the 
direction of the gradient vector, upon which the gradient reverses or when the input value 
is greater than or equal to the gradient stop value is found, whichever occurs first.  
 
Overall, this use of spatial information allows for a more spatially and physically 
consistent product.  This concept is also explained in Pavolonis (2010).   
 
The gradient vector points from low to high pixels of the input, such that the vector is 
perpendicular to isolines of the input value. This concept is best illustrated with a figure.  
Figure 1, which is of εstropo(11µm), is the actual gradient vector field, thinned for the sake 
of clarity.  As can be seen, the vectors in this image point from cloud edge towards the 
optically thicker interior of the cloud.  This allows one to consult the spectral information 
at an interior pixel within the same cloud in order to avoid using the spectral information 
offered by pixels with a very weak cloud radiative signal. 
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Figure 39: The gradient vector with respect to cloud emissivity at the top of the troposphere is shown 
overlaid on a false color RGB image (top) and the actual cloud emissivity image itself (bottom).  The 

tail of the arrow indicates the reference pixel location. 
  
While the above was a generalized description of the gradient filter, we next describe the 
method for calculating the LRC (the gradient vector).   
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The inputs to the LRC routine are listed below 
 

1. The value on which the gradient is being calculated on (Grad_Input) 
2. The number of elements in the current segment 
3. The number of lines in the current segment 
4. A yes/no mask for each pixel in a given segment, determining which pixels the 

LRC is supposed to be calculated for. (Valid_Mask) 
5. The minimum allowed input value (Min_Grad) 
6. The maximum allowed input value (Max_Grid) 
7. The gradient stop value (Grad_Stop) 

 
The input values to the LRC routine are typically either the 11µm troposphere emissivity, 
εstropo(11µm), the median filtered nadir corrected 11µm troposphere emissivity, εstropo, nadir 

(11µm) or the 11µm brightness temperature. Table 1 lists the values for five of the seven 
inputs for each of the five algorithms that use the LRC subroutine (also known as the 
gradient filter): 
 
Table 1. Table of inputs to the gradient filter 

Algorithm 
Gradient 
Variable 

(Grad_Input) 

Variable used to determine 
Valid_Mask 

(LRC calculated for the following 
conditions) 

Minimum Valid 
Value of 
Gradient 
Variable 

(Min_Grad) 

Maximum Valid 
Value of 
Gradient 
Variable 

(Max_Grad) 

Gradient 
Stop Value 

(Grad_Stop) 

Cloud Mask εtropo(11µm) εtropo(11µm) /= missing 0.0 1.0 0.75 

Cloud 
Type/Phase 

3x3 median 
filtered 

εtropo, nadir (11µm) 

All Valid Spectral Data (i.e all non-
space pixels, all correctly navigated 
and valid pixels for type/phase alg.) 

0.0 1.0 0.7 

Cloud 
Height/Press/Te

mp 
εtropo(11µm) All pixels 0.0 1.0 0.75 

Volcanic Ash 
3x3 median 

filtered 
εtropo, nadir (11µm) 

All Valid Spectral Data (i.e all non-
space pixels, all correctly navigated 

and valid pixels for Vol ash alg.) 
0.0 1.0 0.7 

SO2 (Option 2) 
3x3 median 

filtered 
εtropo, nadir (11µm)  

All Valid Spectral Data (i.e all non-
space pixels, all correctly navigated 

and valid pixels for SO2 alg ).  
0.0 1.0 0.7 

  
 
Please note the stark differences in the inputs and min/max/stop values for each 
algorithm. A discussion on how to calculate Grad_Input is described in a appropriate 
sections of the GOES-R AIADD. Any filtering applied to the input data, such the 3x3 
median filter applied to the εstropo, nadir (11µm) in the Cloud Type/Phase and Volcanic Ash 
algorithms, is described in the individual ATBDs. 
 
The output for the LRC algorithm is as follows: 

1. Array of element indices of the LRCs for the current segment 
2. Array of line indices of the LRCs for the current segment 
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Prior to the LRC algorithm being called, the array of pixels in a given segment 
determining if the LRC is to be calculated or not, needs to be calculated (Valid_Mask). 
The associated array for Valid_Mask is shown in Table 1. Valid_Mask is simply a yes/no 
mask for each pixel in a given segment of data which determines which pixels will be run 
through the LRC algorithm. This does not mean that all of the pixels going though the 
LRC algorithm will have an associated LRC.  
 
After the Valid_Mask is determined inside the individual product algorithm, such as the 
cloud mask, the flow of the LRC routine can be seen in Figure 40 : 
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Figure 40. Flow chart of LRC algorithm 
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Once inside the LRC routine, the LRC line/element arrays (the outputs) are initialized to 
missing (-999.0). The LRC routine then loops over every line and element, calculating 
the LRC for each pixel individually. The validity of a given reference pixel (Gref) is 
determined by the following criteria 
 

1. Does the pixel have a value greater than the minimum allowed value (Min_Grad)? 
2. Does the pixel have a value less than the maximum allowed input value 

(Max_Value)? 
3. Does the LRC need to be calculated for the current pixel? 

 
If any of the above statements are false, the LRC algorithm will simply skip over that 
particular pixel. However, if all three statements are true, then the pixel is considered 
valid and the algorithm will proceed to the next step.  If a given pixel is an LRC, it is 
highly likely that it will have a value greater than the maximum allowed value.  
  
The next step in the gradient filter is the determination of the initial direction of the 
gradient.  Initially, the gradient test value (Gtest), which is a local variable, set to a large 
number (99999) and the direction is set to missing.  The gradient (Gdiff) between the 
reference pixel (Gref) and the neighboring pixel is two pixels away in a given direction 
calculated. This difference is only calculated if the neighboring pixel is greater than or 
equal to Min_Grad and less than or equal to Max_Grad. For each direction, if Gdiff is less 
than Gtest , then Gtest is set to Gdiff. Gdiff is calculated for each of the 8 surrounding pixels, 
and the direction that has the smallest Gtest is selected as the direction to look for the local 
radiative center. If the direction is set to missing, then the LRC routine moves to the next 
pixel in the segment. This can only occur if all the surrounding pixels are either smaller 
than Grad_Min or greater than Grad_Max.  
 
The surrounding pixels are tested in the following manner: 
 
Table 2. Pixels tested in determination of direction of the gradient. 

Direction # Y direction X direction 
1 Line – 2 Elem + 0 
2 Line – 2 Elem + 2 
3 Line + 0 Elem + 2 
4 Line + 2 Elem + 2 
5 Line + 2 Elem + 0 
6 Line + 2 Elem – 2 
7 Line + 0 Elem – 2 
8 Line - 2 Elem – 2 

 
If no direction is specified, which will occur if none of the surrounding pixels are valid, 
then the LRC line/element is set to missing for the reference pixel. However, if there is a 
valid gradient direction, the routine then looks out along the given direction, starting at 
the pixel next to the reference pixel in the direction of the gradient. Thus, the filter starts 
at the pixel shown in Table 3. 
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Table 3. . Starting pixel for gradient test 
Direction # Y direction X direction 

1 Line – 1 Elem + 0 
2 Line – 1 Elem + 1 
3 Line + 0 Elem + 1 
4 Line + 1 Elem + 1 
5 Line + 1 Elem + 0 
6 Line + 1 Elem – 1 
7 Line + 0 Elem – 1 
8 Line - 1 Elem – 1 

 
where Line and Elem is the line and element of the reference pixel. The routine continues 
testing the current pixel (not the reference pixel) with the next pixel along the gradient for 
one of the six stopping conditions: 
 

1. The test pixel is less than or equal to Min_Grad 
2. The test pixel is greater than or equal to Max_Grad 
3. The test pixel is greater than or equal to the stop value (Grad_Stop) 
4. The next pixel along the gradient is less than the test pixel.  
5. The gradient filter has reached the maximum number of steps to look out 
6. The test pixel is at the edge of the segment  

 
If any one of these conditions is met, the line and element number of the test pixel along 
the gradient that met this condition are stored as the location of the LRC for the current 
pixel. For example, for pixel 30,30 of a given segment, if the gradient direction is #4, 
then the gradient filter tests along (30+n, 30+n), where n is the current step being tested. 
For the fourth pixel being tested, the current pixel would be (35,35) and the test pixel 
would be (36,36).  So, if  εstropo(36,36) <  εstropo(35,35), then the LRC would return  
(35,35) for the line/element of the LRC. The gradient filter has checks in each of the 
directions so that it does not extend further than edge of the given segment. 
 
Originally, the maximum number of steps that could be taken was set to 150. However, a 
study done by Michael Pavolonis (NOAA/NESDIS) showed that the average number of 
steps that are needed to find the LRC is less than or equal to 30, as can be seen in Figure 
41. 
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Figure 41. LRC analysis, performed by Michael Pavolonis (NOAA/NESDIS), showing the number of 
steps needed to find LRC. 
It should be noted that the returned value of the LRC location is actually +-1 pixel in the 
line or element direction from the actual location of the LRC. This is not of consequence, 
scientifically speaking, since the input to the gradient filter is an approximation anyway.  
In the case that the reference pixel is its own LRC, the returned value of the LRC will be 
+- pixel in the line or element direction from the actual LRC pixel.  
 
After all the LRC lines/elements are calculated for a given segment, the array of LRC 
lines and elements is then returned to the given subroutine as output from the LRC 
(gradient) subroutine. 
 
Reference:  Pavolonis, M. J., 2010b: Advances in extracting cloud composition 
information from spaceborne infrared radiances: A robust alternative to brightness 
temperatures. Part II: Proof of concept. To be submitted to the J. Applied Meteorology 
and Climatology. 
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10.  CRTM 

a.  Data description 
 
Description: Community radiative transfer model  
Filename:  N/A 
Origin: NOAA / NESDIS  
Size: N/A 
Static/Dynamic: N/A 

b.    Interpolation description 
 

A double linear interpolation is applied in the interpolation of the 
transmissitance and radiance profile, as well as in the surface emissivity, 
from four nearest neighbor NWP grid points to the satellite observation 
point. There is no curvature effect. The weights of the four points are 
defined by the Latitude / Longitude difference between neighbor NWP 
grid points and the satellite observation point.  The weight is defined with 
subroutine ValueToGrid_Coord: 
 
NWP forecast data is in a regular grid. 
 
 Suppose: 
Latitude and Longitude of the four points are: 

(Lat1, Lon1), (Lat1, Lon2), (Lat2, Lon1), (Lat2, Lon2) 
Satellite observation point is: 

(Lat, Lon) 
 
Define  

aLat = (Lat – Lat1) / (Lat2 – Lat1) 
alon = (Lon – Lon1) / (Lon2 – Lon1) 

 
Then the weights at four points are: 

w11 = aLat * aLon 
w12 = aLat * (1 – aLon) 
w21 = (1 – aLat) * aLon 
w22 = (1-aLat) * (1 – aLon) 

 
Also define variable at the four points are:  

a11, a12, a21, a22  
 
Then the corresponding interpolated result at satellite observation point 
(Lat, Lon) should be: 

 
a(Lat, Lon) = ( a11*w11 + a12*w12 + a21*w21 + a22*w22 ) / u 
 
Where, 
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                                    u = w11 + w12 + w21 + w22 
 

c. CRTM calling procedure in the AIT framework 
The NWP GFS pressure, temperature, moisture and ozone profiles start on 
101 pressure levels.  
They are converted to 100 layers in subroutine 
Compute_Layer_Properties. The layer temperature between two levels is 
simply the average of the temperature on the two levels. 
layer_temperature(i) = (level_temperature(i) + level_temperature(i+1))/2 
While pressure, moisture and ozone are assume to be exponential with 
height. 
hp = (log(p1)-log(p2))/(z1-z2) 
p = p1* exp(z*hp) 
Where p is layer pressure, moisture or ozone. p1,p2 represent level 
pressure, moisture or ozone. z is the height of the layer. 
 
CRTM needs to be initialized before calling. This is done in subroutine 
Initialize_OPTRAN. In this call, you tell CRTM which satellite you will 
run the model. The sensor name is passed through function call 
CRTM_Init.  The sensor name is used to construct the sensor specific 
SpcCoeff and TauCoeff filenames containing the necessary coefficient 
data, i.e. seviri_m08.SpcCoeff.bin and seviri_m08.TauCoeff.bin. The 
sensor names have to match the coefficient file names.  You will allocate 
the output array, which is RTSolution, for the number of channels of the 
satellite and the number of profiles. You also allocate memory for the 
CRTM Options, Atmosphere and RTSoluiton structure. Here we allocate 
the second RTSolution array for the second CRTM call to calculate 
derivatives for SST algorithm. 
 
Before you call CRTM forward model, load the 100-layer pressure, 
temperature, Moisture and ozone profiles and the 101 level pressure 
profile into the Atmosphere Structure. Set the units for the two absorbers 
(H2O and O3) to be MASS_MIXING_RATIO_UNITS and 
VOLUME_MIXING_RATIO_UNITS respectively.  Set the 
Water_Coverage in Surface structure to be 100% in order to get surface 
emissivity over water. Land surface emissivity will be using SEEBOR.  
Also set other variables in Surface data structure, such as wind 
speed/direction and surface temperature.  Use NWP surface temperature 
for land and coastline, and OISST sea surface temperature for water. Set 
Sensor_Zenith_Angle and Source_Zenith_Angle in Geometry structure.  
Call CRTM_Forward with normal NWP profiles to fill RTSolution, then 
call CRTM_Forward again with moisture profile multiplied by 1.05 to fill  
RTSolution_SST. The subroutine for this step is Call_OPTRAN. 
 
After calling CRTM forward model, loop through each channel to 
calculate transmittance from each level to Top of Atmosphere (TOA).  
What you get from RTSolution is layer optical depth, to get transmittance 
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 Trans_Atm_Clr(1) = 1.0 
 
 Do Level =  2 , TotalLevels 
    Layer_OD = RTSolution(ChnCounter, 1)%Layer_Optical_Depth(Level 
-1) 
    Layer_OD = Layer_OD / 
COS(CRTM%Grid%RTM(LonIndex,LatIndex) & 
                          %d(Virtual_ZenAngle_Index)%SatZenAng * DTOR) 
    Trans_Atm_Clr(Level) = EXP(-1 * Layer_OD) & 
                         * Trans_Atm_Clr(Level - 1) 
 ENDDO 
DTOR is degree to radius PI/180. 
Radiance and cloud profiles are calculated in Clear_Radiance_Prof 
 SUBROUTINE Clear_Radiance_Prof(ChnIndex, TempProf, TauProf, 
RadProf, & 
                               CloudProf) 
 B1 = Planck_Rad_Fast(ChnIndex, TempProf(1)) 
 RadProf(1) = 0.0_SINGLE 
 CloudProf(1) = B1*TauProf(1) 
 
 DO LevelIndex=2, NumLevels 
    B2 = Planck_Rad_Fast(ChnIndex, TempProf(LevelIndex)) 
    dtrn = -(TauProf(LevelIndex) - TauProf(LevelIndex-1)) 
    RadProf(LevelIndex) = RadProf(LevelIndex-1) + 
(B1+B2)/2.0_SINGLE * dtrn 
 
          
    CloudProf(LevelIndex) = RadProf(LevelIndex) + 
B2*TauProf(LevelIndex) 
    B1 = B2 
 END DO 
Transmittance, radiance and cloud profiles are calculated for both normal 
CRTM structure and the 2nd CRTM structure for SST. 
 
Call Clear_Radiance_TOA to get TOA clear-sky radiance and brightness 
temperature. 
SUBROUTINE Clear_Radiance_TOA(Option, ChnIndex, RadAtm, 
TauAtm, SfcTemp, & 
                                 SfcEmiss, RadClr, BrTemp_Clr, Rad_Down) 
IF(Option == 1) THEN 
   IF(PRESENT(Rad_Down))THEN 
      RadClr = RadAtm + (SfcEmiss * Planck_Rad_Fast(ChnIndex, 
SfcTemp) & 
             + (1. - SfcEmiss) * Rad_Down) * TauAtm 
   ELSE 
      RadClr = RadAtm + SfcEmiss * Planck_Rad_Fast(ChnIndex, 
SfcTemp) & 
                   * TauAtm 
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   ENDIF 
          
   CALL Planck_Temp(ChnIndex, RadClr, BrTemp_Clr) 
 
 ELSE 
    RadClr = 0.0 
    BrTemp_Clr = 0.0 
ENDIF 
In this subroutine, Rad_Down is optional, depending on if you want to 
have a reflection part from downward radiance when you calculate the 
clear-sky radiance.  Notice that clear-sky radiance and brightness 
temperature on NWP grid only calculated for normal CRTM structure not 
the SST CRTM structure. 
  
Also save the downward radiances from RTSolution and RTSolution_SST 
to CRTM_RadDown and CRTM_RadDown_SST. Save CRTM calculated 
surface emissivity to CRTM_SfcEmiss. The above steps are done in 
subroutine CRTM_OPTRAN 

 


